MEIJER'S G-FUNCTION AND THE TEMPERATURE IN A NONHOMOGENEOUS BAR

BY S. D. BAJPUI

[Department of Applied Mathematics, Shri G.S. Technological Institute, Indore-3 (M.P.)]

Received November 25, 1967

(Communicated by Prof. P. L. Bhatnagar, F.A.Sc.)

ABSTRACT

In this paper we have employed Meijer's G-function to solve a problem of the temperature in a nonhomogeneous bar and shown how Meijer's G-function may be found useful in solving many problems of applied mathematics.

1. INTRODUCTION

As an example of the use of Meijer's G-function in heat conduction we shall consider the problem of determining a function \(u(x, t) \), if \(u = f(x) \) when \(t = 0 \), where \(u(x, t) \) represents the temperature in a nonhomogeneous bar with ends at \(x = -1 \) and \(x = 1 \) in which the thermal conductivity is proportional to \(1 - x^2 \), and if the lateral surface of the bar is insulated, the heat equation has the form [1, p. 197, (8)]

\[
\frac{\partial u}{\partial t} = b \frac{\partial}{\partial x} \left[(1 - x^2) \frac{\partial u}{\partial x} \right],
\]

where \(b \) is a constant, provided the thermal coefficient \(c_0 \) is a constant [1, p. 17, Sec. 9]. The ends \(x = \pm 1 \) are also insulated because the conductivity vanishes there.

In what follows for sake of brevity \(a_r \) denotes \(a_1, \ldots, a_r \); \(\lambda \) is a positive integer and the symbol \(\triangle (\lambda, a) \) represents the set of parameters

\[
\frac{a}{\lambda}, \frac{a + 1}{\lambda}, \ldots, \frac{a + \lambda - 1}{\lambda}.
\]

In this paper we have considered

\[
\frac{a}{\lambda}, \frac{a + 1}{\lambda}, \ldots, \frac{a + \lambda - 1}{\lambda}.
\]

\[u = f(x) = (1 - x)^{a_r} G^{m,n}_{p,q} \left[x (1 - x)^{\lambda} \right]_{b_{a_r}}. \]
The following formula is required in the proof:

\[
\int_{-1}^{1} \frac{(1 - x)^{s} P_{m}(x) G_{r, \lambda}^{p, q}}{b_{s}} \left[z (1 - x)^{\lambda} \right] b_{s} dx
\]

\[
= \frac{2^{p+q}}{\lambda} G_{r+s, \lambda}^{p+q, q+s} \left[2^{\lambda} z \left\{ \frac{\Delta_{p} \left(\lambda, -\sigma \right), a_{r}, \Delta_{q} \left(\lambda, -\sigma \right) \Delta_{q} \left(\lambda, -\sigma + m \right), b_{s}, \Delta_{p} \left(\lambda, 1 - \sigma - m \right) \right\} \right]
\]

(1.3)

where

\[r + s < 2 (p + q), \quad |\arg z| < (p + q - \frac{1}{2} r - \frac{1}{2} s) \pi, \]

\[\text{Re} \left(\sigma + \lambda b_{j} \right) > -1, \quad j = 1, 2, \ldots, p. \]

which follows from [3, p. 198, (3.2)].

2. The solution to be obtained is

\[
u (x, t) = \frac{2^{p}}{\lambda} \sum_{n=0}^{\infty} (2n + 1) G_{r+s, \lambda}^{p+q, q+s} \times \left[2^{\lambda} z \left\{ \frac{\Delta_{p} \left(\lambda, -\sigma \right), a_{r}, \Delta_{q} \left(\lambda, -\sigma \right) \Delta_{q} \left(\lambda, -\sigma + n \right), b_{s}, \Delta_{p} \left(\lambda, 1 - \sigma - n \right) \right\} \right] \times P_{n} (x) e^{-b_{n} (n+1) t}, \]

(2.1)

where

\[r + s < 2 (p + q), \quad |\arg z| < (p + q - \frac{1}{2} r - \frac{1}{2} s) \pi, \]

\[\text{Re} \left(\sigma + \lambda b_{j} \right) > -1, \quad j = 1, 2, \ldots, p. \]

Proof.—The solution of the problem as given in [1, p. 197, (8)] is

\[
u (x, t) = \sum_{n=0}^{\infty} A_{n} P_{n} (x) e^{-b_{n} (n+1) t} \]

(2.2)

If \(t = 0 \), then by virtue of (1.2), we have

\[
(1 - x)^{s} G_{r, \lambda}^{p, q} \left[z (1 - x)^{\lambda} \left\{ a_{r} \right\} b_{s} \right] = \sum_{n=0}^{\infty} A_{n} P_{n} (x). \]

(2.3)
Meijer’s G-Function and the Temperature in a Nonhomogeneous Bar

Multiplying both sides of (2.3) by $P_m(x)$ and integrating with respect to x from -1 to 1, we obtain

$$\int_{-1}^{1} (1 - x)^{\sigma} P_m(x) G_{\alpha, \beta}^{p, q} \left[z (1 - x)^{\lambda} \right] \frac{dx}{b_\alpha^n} = \sum_{\alpha = 0}^{\infty} A_{\alpha} \int_{-1}^{1} P_m(x) P_n(x) dx. \quad (2.4)$$

Using (1.3) and the orthogonality property of Legendre polynomials [2, p. 277, (13) and (14)], we get

$$A_m = (2m + 1) \frac{2^\lambda}{\lambda} G_{r + 2\lambda, s + 2\lambda}^{p + \lambda, q + \lambda}$$

$$\times \left[2^\lambda \left[\triangle (\lambda, -\sigma), a_r, \triangle (\lambda, -\sigma) \triangle (\lambda, -\sigma + \rho), b_\beta, \triangle (\lambda, -1 - \sigma - \rho) \right] \right], \quad (2.5)$$

where

$$r + s < 2 (p + q), \quad |\arg z| < (p + q - \frac{1}{2} r - \frac{1}{2} s)\pi, \quad \Re (\sigma + \lambda b_j) > -1, \quad j = 1, 2, \ldots, p.$$

Now with the help of (2.2) and (2.5) the solution (2.1) follows immediately.

On specializing the parameters, the G-function may be converted into Bessel functions, Legendre functions, and other higher transcendental functions [2, pp. 434–44]. Therefore, the $f(x)$ given in (1.2) is of general character and hence may encompass several cases of interest.

ACKNOWLEDGEMENT

I am thankful to Dr. V. M. Bhise for his keen interest in the preparation of this paper. My thanks are also due to Principal Dr. S. M. Das Gupta for the facilities he gave to me.

REFERENCES

