SYNTHESIS OF p-BENZOHYDROQUINONE-1, 3, 5-C13

BY M. R. DAS, M. P. KHAKHAR AND M. V. KRISHNAMURTHY
(Tata Institute of Fundamental Research, Bombay and Atomic Energy Establishment, Trombay, Bombay)

Received May 7, 1962
(Communicated by Dr. S. S. Dharmatti, F.A.Sc.)

The hyperfine splittings (hfs) produced in the electron spin resonance (ESR) spectra of aromatic free radicals by carbon-13 at specific positions give valuable information, as regards the mechanism of electron nuclear hyperfine interactions existing in such systems. The semiquinone ions, which are formed by the atmospheric oxidation of an alcoholic solution of the corresponding hydroquinones in the presence of alcoholic sodium or potassium hydroxide are suitable for the study of these interactions. The hfs due to C13 in natural abundance in the 2-position from p-benzo-semiquinone ion has been observed as weak satellites by several authors,1 and that due to C13 in the 1-position has also been observed2 by using the C13-labelled compound, p-benzo-semiquinone ion 1-C13. It was with a view to observe the C13 splittings unambiguously, from the two differently situated C-atoms in the ring that the present synthesis of p-benzo-hydroquinone-1, 3, 5-C313 was undertaken. The synthesis of p-benzo-hydroquinone-1-C13 was reported earlier3; and p-benzo-hydroquinone-1, 3, 5-C313 has been synthesised for the first time and involved the following sequence of reactions described in detail later:

\[
\begin{align*}
\text{BaCO}_3 & \xrightarrow{\text{H}_2\text{SO}_4} \text{CO}_2 & \text{CH}_3\text{Mgl} & \xrightarrow{\text{H}_2\text{O}} \text{CH}_3\text{COOH} & \text{NaOH} \\
\text{CH}_3\text{-COONa} & \xrightarrow{\text{C}_6\text{H}_5\text{COBr}} \text{CH}_3\text{-CO-Br} & \text{CuCN} & \xrightarrow{\text{CH}_3\text{-CO-CN}} \\
\text{CH}_3\text{-CO-NH}_2 & \xrightarrow{2\text{NHCl}} \text{CH}_3\text{-CO-COOH} & \text{Conc. NaOH} \\
\text{HCl gas} & \xrightarrow{\text{70}^\circ\text{C}} \\
\end{align*}
\]
1. Sodium acetate-1-C13 (CH\textsubscript{3}-\textit{COONa})

The labelled sodium acetate was synthesised from Ba13CO\textsubscript{3} (enriched with C13 to about 51\%) through the Grignard reaction and the method has been described earlier.3

2. Acetyl-1-C13 bromide (CH\textsubscript{3}-\textit{CO}-Br)

An excess of benzoyl bromide4 (3·25 moles of bromide for 1 mole of the fused acetate) was added to the fused sodium acetate contained in a round-bottomed flask. The flask was connected to a distilling assembly with provision for circulating ice-cold water; the contents of the flask were slowly heated using an oil-bath. When the temperature of the bath comes to 180\°C. distillation starts and the distillate is collected while the temperature of the bath is maintained between 180 and 185\°C. A typical yield from 20 gm. of the acetate is 24·9 gm. (83\%).

3. Pyruvonitrile-2-C13 (CH\textsubscript{3}-\textit{CO}-CN)

The acetyl-1-C13 bromide was converted to pyruvonitrile using a modified version of the method used by Calvin and Lemmon.5 The apparatus con-
sisted of a 250 c.c. round-bottomed flask with two necks, to one of which
is attached a reflux condenser protected from moisture by a fused CaCl₂
tube. To the other neck is attached a small separating funnel containing
22 gm. of acetyl bromide. A slight excess of dry cuprous cyanide (5 moles
for 4 moles of acetyl bromide) was taken in the flask and the bromide was
added slowly in the course of 35–40 min. The flask was shaken vigorously
during the addition. The pyruvonitrile was isolated as described by Calvin
and Lemmon⁶; yield 7.3 gm. (59.4%); b.p. 93°C.

4. Pyruvamide-2-C¹³ (CH₃-¹³CO-CONH₂)

As it has been found by Wood⁷ that the intermediate isolation and
purification of the amide increases the yield of pure pyruvic acid, compared
to the direct hydrolysis of the nitrile to acid, pyruvamide-2-C¹³ was prepared
from a solution of pyruvonitrile in anhydrous ether according to the method
described by Anker.⁷ The product was crystallised from ethyl acetate;
yield: 5.3 gm. (57.6%); m.p. 127°C.

5. Pyruvic-2-C¹³-acid (CH₃-¹³CO-COOH)

The pyruvamide was hydrolysed using an equimolecular quantity of
2 N HCl at 70°C. It was found that if the temperature of hydrolysis and
the concentration of acid were higher, a good amount of the amide was
hydrolysed to acetic acid. After keeping the mixture at 70°C for an hour,
the solution was cooled and was extracted a large number of times with
small quantities of ether (16–18 times). The ether extract was dried with
anhydrous sodium sulphate and the main bulk of the ether was distilled off
using a fractionating column. The residue was processed as described by
Wang et al.¹⁸ Yield of pure acid: 3 gm. (56.6%).

6. Methyl dihydro trimesic-1, 3, 5-C₃¹³-acid

The C¹³ labelled pyruvic acid obtained as above was isotopically
diluted with unlabelled pyruvic acid (pure distilled material) so that the
isotopic enrichment was about 25%. This was converted to methyl dihydro
trimesic-1, 3, 5-C₃¹³-acid by the method described by Hughes and Reid.⁹
Yield: 3.26 gm. (64.3%).

7. Uvitic-1, 3, 5-C₃¹³-acid
The method described by Hughes and Reid\(^9\) was followed for the synthesis of uvitic acid from methyl dihydrotrimesic acid. 3·25 gm. of the starting material gave 2·3 gm. of uvitic acid. Yield: 89·1\%; m.p. 291\(^\circ\) C.

8. Toluene-1, 3, 5-\(^{13}\)C

The decarboxylation of the labelled uvitic acid to toluene-1, 3, 5-\(^{13}\)C was also accomplished by the method due to Hughes and Reid.\(^9\) Yield of toluene from 2·3 gm. uvitic acid = 0·828 gm. \((70·7\%); \ n^5_s = 1·482.\)

9. Conversions from toluene-1, 3, 5-\(^{13}\)C to \(p\)-Benzoquinone-

1. 3, 5-\(^{13}\)C

From toluene-1, 3, 5-\(^{13}\)C to \(p\)-benzoquinone-1, 3, 5-\(^{13}\)C, the sequence of reactions were the same as those reported earlier by one of the authors.\(^3\) The following modifications were found to improve the yield.

(i) From the ether extract obtained after oxidising the labelled aniline-hydrochloride, the \(p\)-benzoquinone-1, 3, 5-\(^{13}\)C was isolated by removing the ether under vacuum. The recovery is quantitative.

(ii) In the last stage, from the dried ether extract of \(p\)-benzoquinone-1, 3, 5-\(^{13}\)C the ether was evaporated off by a current of dry nitrogen. This makes the yield in the conversion of \(p\)-benzoquinone-1, 3, 5-\(^{13}\)C to \(p\)-benzoquinone-1, 3, 5-\(^{13}\)C almost quantitative.

220 mgm. of the pure final product was isolated; m.p. 170\(^\circ\) C.

The hyperfine structures produced in the ESR spectrum of the semi-quinone ion\(^{10}\) obtained from this compound has confirmed the presence of \(^{13}\)C in the 1, 3 and 5 positions.

ACKNOWLEDGEMENT

The authors are extremely thankful to Dr. B. Venkataraman and Prof. S. S. Dharmatti for several helpful discussions and encouragement.

REFERENCES

3. and Wertz, J. E.
Synthesis of p-Benzohydroquinone-1, 3, 5-\(C^2\)

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Journal/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Das, M. R. and Venkataraman, B.</td>
<td>(To be published.)</td>
</tr>
</tbody>
</table>