THE RESOLUTION OF THE CLIFFORD ALGEBRA (DIRAC ALGEBRA) WITH ANY NUMBER OF SYMBOLS AS THE DIRECT SUM OF MINIMAL LEFT IDEALS

By K. N. Srinivasa Rao and C. K. Venkata Narasimhiah

Received February 10, 1950
(Communicated by Prof. B. S. Madhava Rao, F.A.S.C.)

INTRODUCTION

In this note the Clifford-Dirac Algebra generated by n-symbols e_1, e_2, \ldots, e_n satisfying the relations

$$e_re_t + e_te_r = 2\delta_{rt} \quad \text{(Kronecker symbol)}$$

over a ground field whose characteristic $= 2$ and which contains $\sqrt{-1}$ is resolved into the sum of minimal left ideals. These ideals as well as their bases have been chosen in a suitable manner and the corresponding representation is seen to be identical with the well-known one given by Weyl and Brauer.¹

We wish to thank Dr. K. Venkatachaliengar for suggesting the problem and helpful guidance, and Prof. B. S. Madhava Rao for kind encouragement.

§1. It is well known² that the basis elements of the Clifford Algebra with the n symbols e_1, e_2, \ldots, e_n satisfying the relation

I. $e_re_t + e_te_r = 2\delta_{rt} \quad \text{(Kronecker symbol)}$ are all expressed succinctly by the expression $e_1^{\lambda_1}, e_2^{\lambda_2}, \ldots, e_n^{\lambda_n}$ where the λ^r are integers mod 2. Evidently there are 2^n basis elements.

We deduce easily,

II. (1) $e_1e_2 \ldots e_{2r+1}$ commutes with the e_p; $p < 2r + 1$

and anticommutes with the e_p; $p > 2r + 1$.

II. (2) $e_1e_2 \ldots e_{2r}$ anticommutes with the e_p; $p < 2r$

and commutes with the e_p; $p > 2r$.

46
Resolution of Clifford Algebra with Any Number of Symbols

II. (3) \((e_1e_2\ldots e_n)^2 = (-1)^r\)

II. (4) \((e_1e_2\ldots e_{2r+1})^2 = (-1)^r\)

It follows also that the algebra \(C_{2n+1}\) (generated by an odd number of symbols) can be resolved into a direct sum of two simple algebras each of which is isomorphic with a \(C_{2n}\): i.e.,

\[C_{2n+1} = C_{2n+1}\omega + C_{2n+1}(1 - \omega) \]

where

\[\omega = \frac{1 + e_1e_2\ldots e_{2n+1}}{2} \quad \text{if } n \text{ is even} \]

\[\omega = \frac{1 + i e_1e_2\ldots e_{2n+1}}{2} \quad \text{if } n \text{ is odd}. \]

§2. We now take up the complete resolution of a \(C_{2n}\) as a direct sum of minimal, mutually orthogonal left ideals. For this purpose we make use of a result due to Witt, viz., that a Clifford Algebra with \(2n\) symbols is the direct product of \(n\) such algebras with 2 symbols. Witt has shown that

\[C_{2n} = (1, e_1, e_2) \times (1, ie_1e_2e_3, ie_1e_2e_4) \times (\ldots \ldots) \ldots \ldots \times (\ldots) \]

where each of the brackets represents an algebra generated by the symbols contained in it. Therefore, the idempotents generating minimal left ideals in \(C_{2n}\) are given by

\[\omega_r = \frac{(1 + e_1)}{2} \cdot \frac{(1 + i e_1e_2\ldots e_{2n-1})}{2} \ldots \frac{(1 + i e_1e_2\ldots e_{2n-1})}{2} \ldots \ldots n \]

factors. Corresponding to the two signs \(\pm\) in each of the brackets there are evidently \(2^n\) such \(\omega_r\)'s. We now show that

\[\omega_r^2 = \omega_r \quad \text{and} \quad \omega_r\omega_s = 0 \quad \text{if } r \neq s. \]

Now

\[\omega_r^2 = \left\{ \frac{(1 + e_1)}{2} \ldots \frac{(1 + i e_1e_2\ldots e_{2n-1})}{2} \right\} \]

\[\left\{ \frac{(1 + e_1)}{2} \ldots \frac{(1 + i e_1e_2\ldots e_{2n-1})}{2} \right\} \quad \text{n even} \]

\[= \left(\frac{1 + e_1}{2}\right)^2 \ldots \left(\frac{1 + i e_1e_2\ldots e_{2n-1}}{2}\right)^2 \]

\[= \left(\frac{1 + e_1}{2}\right)^2 \ldots \left(\frac{1 + i e_1e_2\ldots e_{2n-1}}{2}\right) = \omega_r, \]
To show that \(\omega_r \omega_s = 0 \) \((r \neq s)\) we first observe that in the expressions for \(\omega_r \) and \(\omega_s \), there is at least one bracket which appears with a change of sign in it. Calling this the \(p \)th bracket, if it is \(\left(1 + i e_1 e_2 \ldots e_{2^{p-1}} \right) \) in \(\omega_r \), it will be \(\left(1 - i e_1 e_2 \ldots e_{2^{p-1}} \right) \) in \(\omega_s \). Since the factors in the brackets commute with each other, we can bring the \(p \)th brackets together in \(\omega_r \omega_s \). But

\[
\frac{1 + i e_1 e_2 \ldots e_{2^{p-1}}}{2} \cdot \frac{1 - i e_1 e_2 \ldots e_{2^{p-1}}}{2} = 0
\]

Hence \(\omega_r \omega_s = 0 \) if \(r \neq s \).

We next prove that \(\sum_{r=1}^{2^n} \omega_r = 1 \).

Proof.—Let the result be true for \(n = m \)

\[
\sum_{r=1}^{2^m} \omega_r = \frac{2^m}{2} (1 \pm e_1) \ldots \left(1 \pm i e_1 e_2 \ldots e_{2^{m-1}} \right) = 1 \text{ for } C_{2^m}
\]

Hence for \(C_{2^{m+2}} \)

\[
\sum_{1}^{2^{m+1}} \omega_r = \sum_{1}^{2^{m+1}} \left(\frac{1 \pm e_1}{2} \right) \ldots \left(\frac{1 \pm i e_1 \ldots e_{2^{m-1}}}{2} \right) \left(\frac{1 \pm e_2 \ldots e_{2^{m+1}}}{2} \right) \\
= \left(\sum_{1}^{2^m} \left(\frac{1 \pm e_1}{2} \right) \ldots \left(\frac{1 \pm i e_1 \ldots e_{2^{m-1}}}{2} \right) \right) \left(\frac{1 + e_2 \ldots e_{2^{m+1}}}{2} \right) \\
+ \left(\sum_{1}^{2^m} \left(\frac{1 \pm e_1}{2} \right) \ldots \left(\frac{1 \pm i e_1 \ldots e_{2^{m-1}}}{2} \right) \right) \left(\frac{1 - e_2 \ldots e_{2^{m+1}}}{2} \right)
\]

\[
= \frac{1 + e_1 e_2 \ldots e_{2^{m+1}}}{2} + \frac{1 - e_1 e_2 \ldots e_{2^{m+1}}}{2} = 1
\]

\(i.e., \) the result is true for \(n = m + 1 \). But for \(n = 1 \),

\[
\sum \omega_r = \frac{1 \pm e_1}{2} = 1 \text{ and hence it is true for all } n.
\]

We now proceed to deduce the irreducible representation of the algebra \(C_{2^n} \) by choosing a suitable basis of the minimal left ideal \(L \): generated by one of \(\omega_r \)'s, say
we first of all show that
\[e_{2k+1} \omega = (-1)^k i e_{2k} \omega \quad k = 1, 2, \ldots, n - 1. \]

Proof. (i) Let \(k \) be even. From II. 1.

\[
\begin{align*}
e_{2k} \omega &= e_{2k} \left(\frac{1 + e_1}{2} \right) \cdots \left(\frac{1 + i e_1 \cdots e_{2k-1}}{2} \right) \cdots \\
&= \left(\frac{1 - e_1}{2} \right) \cdots \left(\frac{1 - i e_1 \cdots e_{2k-1}}{2} \right) \left(e_{2k} - e_1 \cdots e_{2k-1} e_{2k+1} \right) \\
&\quad \cdots \left(\frac{1 + i e_1 \cdots e_{2k-1}}{2} \right) \\
e_{2k+1} \omega &= \left(\frac{1 - e_1}{2} \right) \cdots \left(\frac{1 - i e_1 \cdots e_{2k-1}}{2} \right) \left(e_{2k+1} + e_1 \cdots e_{2k} \right) \\
&\quad \cdots \left(\frac{1 + i e_1 \cdots e_{2n-1}}{2} \right) \\
&= \frac{1 - e_1}{2} \cdots \frac{1 - i e_1 \cdots e_{2k-1}}{2} [e_1 \cdots e_{2k-1}] \times \\
&\quad \left(e_{2k} - e_1 \cdots e_{2k-1} e_{2k+1} \right) \cdots \left(1 + i e_1 \cdots e_{2n-1} \right) \text{ using II. 4.} \\
&= \left(\frac{1 - e_1}{2} \right) \cdots \left(\frac{1 - i e_1 \cdots e_{2k-1}}{2} \right) \left(e_{2k} - e_1 \cdots e_{2k-1} e_{2k+1} \right) \\
&\quad \cdots \left(\frac{1 + i e_1 \cdots e_{2n-1}}{2} \right) \\
&= i e_{2k} \omega. \tag{a}
\end{align*}
\]

(ii) Let \(k \) be odd.

\[
\begin{align*}
e_{2k} \omega &= \left(\frac{1 - e_1}{2} \right) \cdots \left(\frac{1 - e_1 \cdots e_{2k-1}}{2} \right) \left(e_{2k} - i e_1 \cdots e_{2k-1} e_{2k+1} \right) \\
&\quad \cdots \left(\frac{1 + i e_1 \cdots e_{2n-1}}{2} \right)
\end{align*}
\]
K. N. Srinivasa Rao and C. K. Venkatarasimhiah

\[e_{2k+1} \omega = \left(\frac{1 - e_1}{2} \right) \ldots \left(\frac{1 - e_1 \ldots e_{2k-1}}{2} \right) \left(\frac{e_{2k+1} + ie_1 \ldots e_k}{2} \right) \ldots \left(\frac{1 + ie_1 \ldots e_{2n-1}}{2} \right) \]

\[= \left(\frac{1 - e_1}{2} \right) \ldots \left(\frac{1 - e_1 \ldots e_{2k-1}}{2} \right) [ie_1 \ldots e_{2k-1}] \times \left(\frac{e_{2k} - ie_1 \ldots e_{2k-1} e_{2k+1}}{2} \right) \ldots \left(\frac{1 + ie_1 \ldots e_{2n-1}}{2} \right) \]

\[= \left(\frac{1 - e_1}{2} \right) \ldots \left(\frac{ie_1 \ldots e_{2k-1} - i}{2} \right) \left(\frac{e_{2k} - ie_1 \ldots e_{2k-1} e_{2k+1}}{2} \right) \ldots \left(\frac{1 + ie_1 \ldots e_{2n-1}}{2} \right) \]

\[= -i e_{2k} \omega. \quad (b) \]

Combining (a) and (b) we get

\[e_{2k+1} \omega = (-1)^k ie_{2k} \omega. \]

We thus see that all the symbols with odd suffixes can be expressed in terms of those with even suffixes only and that \(e_1 \omega = \omega \). We therefore take, as the basis elements of the minimal left ideal generated by \(\omega \) the \(2^n \) terms occurring in

\[e_2^{\lambda_n} e_3^{\lambda_{n-1}} \ldots e_2^{\lambda_2} e_1^{\lambda_1} \omega = a_r \omega \text{ where the } \lambda's \text{ are integers mod.2.} \]

The \(e's \) are written down, as above, with the suffixes, always in the descending order and \(\lambda_1, \lambda_2, \ldots, \lambda_n \) take the values 0, 1 in the dictionary order. Each \(a_r \) represents a particular combination of the \(e's \) and \(r \) takes \(2^n \) values. We add a direct proof that the \(a_r \omega \) are linearly independent.

Proof.—We first show that if \(a \) represents some combination of the \(e's \), \(a\omega_r = \omega a \) where \(\omega_r \) and \(\omega_s \) are two different mutually orthogonal idempotents. Now an \(a \) is of the form

\[a = e_{2l} e_{2m} \ldots e_{2s} e_{2t}, \text{ where } n \geq l > m \ldots > s > t \geq 1 \]

Hence \(a\omega_r = e_{2l} e_{2m} \ldots e_{2s} e_{2t} \omega_r \).

From II. 1, when \(e_{2l} \) is taken to the right of \(\omega_r \), one can see easily that there will be a change of sign in the first \(t \) brackets only. If now \(e_{2s} \) is brought
Resolution of Clifford Algebra with Any Number of Symbols

To the right of ω_r, the signs will be restored in the first t brackets, but a change of sign occurs in the next $s - t$ brackets and the last $n - s$ brackets remain unaltered. We thus observe that when all the e's are taken to the right of ω_r, it would have changed over to a different orthogonal idempotent ω_r,

$$i.e., \ a\omega_r = \omega_r\alpha \ (r \neq s)$$

Let now $\sum_{r=1}^{2^n} a (\sigma_r \omega) = 0$, i.e.,

$$a_1\omega_1 + a_2\omega_2 + \ldots + a_r\omega_r + \ldots + a_{2^n}\omega_{2^n} = 0$$

i.e., $a_1\omega_1\alpha_1 + a_2\omega_2\alpha_2 + \ldots + a_r\omega_r\alpha_r + \ldots + a_{2^n}\omega_{2^n}\alpha_{2^n} = 0$

Multiply by $\omega_{sr} (r = 1, 2, \ldots, 2^n)$ on the left. We obtain

$$a_r\omega_{sr}\alpha = a_r\omega_r\alpha_r = 0$$

i.e., $a_r = 0, (r = 1, 2, \ldots, 2^n)$ i.e., the $a_r\omega$ are linearly independent.

Choosing these as the basis elements of the left ideal \mathbb{L}: generated by ω, we can obtain the matrices of the representation in terms of the Pauli matrices

$$P_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, P_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, P_3 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \text{ and } E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

The matrices are easily seen to be

$$e_1 \to P_1 \times P_1 \times P_1 \times \ldots \times P_1 \times P_1 \times P_1 \quad n \text{ terms}$$

$$e_{2^k} \to P_1 \times P_1 \times \ldots \times P_2 \times P \times E \times E \times \ldots \times E \quad ,$$

$$e_{2^k+1} \to (-1)^k P_1 \times P_1 \times \ldots \times P_1 \times P_3 \times E \times \ldots \times E \quad ,$$

where P_3 and P_3 occur in the kth place from the right end in the corresponding expressions.

REFERENCES
