ON A BESSEL FUNCTION OF THE SECOND KIND
AND WILKS' Z-DISTRIBUTION

BY K. V. KRISHNA SASTRY, M.A., A.I.A. (LOND.)
(Mysores University)

Received March 8, 1948
(Communicated by Prof. B. S. Madhava Rao)

Wilks studied the distribution of \(Z = B \theta_2 \theta_3 \ldots \theta_n \), where \(\theta_i \) has the distribution

\[
dF = \frac{1}{\Gamma(a_i)} \theta_i^{a_i-1} e^{-\theta_i} d\theta_i; \quad (i = 1, 2, \ldots, n)
\]

He succeeded in integrating the distribution of \(Z \) for \(n = 2 \) and \(a_1 = \frac{1}{2} (N-1) \) and \(a_2 = \frac{1}{2} (N-2) \). Later Chung Tsi Hsu derived the distribution of \(Z \) for \(n = 2 \) and for any values \(a_1 \) and \(a_2 \) in connection with certain tests of hypotheses for samples from two Bivariate Normal populations. The distribution is derived in the form

\[
dF = \frac{2\sqrt{\pi} Z^{a_2-1} e^{-Z(B)} dZ}{B^{a_2} \Gamma(a_2) \Gamma(a_2-1) \Gamma(a_2-a_1+a_2+\frac{1}{2})} \times
\]

\[
\int e^{-2x} \frac{2\sqrt{Z/B} + x}{2\sqrt{Z/B} + x} x^{a_1-a_2+\frac{1}{2}} dx
\]

(1)

Taking \(B = 1, a_1 = a_2 = \frac{1}{2} (N - 1) \), this becomes

\[
dF = \frac{2\sqrt{\pi} Z^{a_2-1} e^{-Z(B)} dZ}{\Gamma(a_2) \Gamma(a_2-1/2)} \times
\]

\[
\int e^{-2x} \frac{2\sqrt{Z} + x}{2\sqrt{Z} + x} x^{-1/2} dx
\]

(2)

He says "Since (2) can apparently not be simplified, I have been unable thus far to find in manageable form the distribution of the ratio \(\frac{Z_1}{Z_2} \) and therefore of \(\frac{\mu'}{\mu} \). So he used the alternative criterion \(\omega = Z - Z' \) (or \(Z_1 - Z_2 \)) for the hypothesis \(H_1 \) that he considered.

2. In this paper I have derived the distribution of \(\frac{Z_1}{Z_2} \) in the most general case by the use of Bessel Function of the second kind and the particular case follows immediately.

532
Now (1) can be written, changing the variable to \(t = 2\sqrt{Z/B} \), and
\[2x = t, \]
and
\[dF = \frac{1}{2^{a_1+a_2-2}} \Gamma (a_1) \Gamma (a_2) \int^t_{a_1-a_2} k_{a_1+a_2-1} (t) dt \] (3)
where \(k_{a_1+a_2-1} (t) \) is a Bessel Function of the second kind.

Thus we have to consider a distribution of the form
\[dF = y_0 x^m k_m (x) \] (4)
The distribution given by
\[dF = y_0 e^{-cx/b} \left\{ \frac{\pi I_1 (x/b)}{\Gamma (m - t)} \right\} dx \] (5)
and
\[dF = y_0 x^m k_m (x) \] (6)
have been studied by A. T. McKay\(^3\) and Karl Pearson\(^5\) respectively. So far I am not aware of the distribution (4) being studied.

3. Moments of the Distribution (4).—The constant \(y_0 \) is given by
\[1 = y_0 \int_0^\infty x^m k_m (x) \] (7)
\[= y_0 2^{m-1} \Gamma \left(\frac{m + 1 + n}{2} \right) \Gamma \left(\frac{m + 1 - n}{2} \right) \ldots \quad \text{[cf.}]\]

or
\[y_0 = 1/2^{m-1} \Gamma \left(\frac{m + 1 + n}{2} \right) \Gamma \left(\frac{m + 1 - n}{2} \right) \]

The moment generating function is
\[M(t) = y_0 \int_0^\infty e^{tx} x^m k_m (x) \] (8)
Hence μ_r—the rth moment about the origin is given by

$$
\mu_r = y_0 2^{m+r-1} \left[\frac{(m + r + 1 + n)}{2} \right] r \left[\frac{(m + r + 1 - n)}{2} \right]
$$

Substituting for y_0

$$
\mu_r = 2^r \frac{\Gamma \left(\frac{m + r + 1 + n}{2} \right) r \left(\frac{m + r + 1 - n}{2} \right)}{\Gamma \left(\frac{m + n + 1}{2} \right) \Gamma \left(\frac{m - n + 1}{2} \right)} \quad (9)
$$

From (9) we get the recurrence formula

$$
\mu_{2k+1}' = 2^2 \left(\frac{m + n + k}{2} \right) \left(\frac{m - n + k}{2} \right) \mu_{2k+1}' \quad (10)
$$

and

$$
\mu_{2k+2}' = 2^2 \left(\frac{m + n + 1 + k}{2} \right) \left(\frac{m - n + 1 + k}{2} \right) \mu_{2k}' \quad (11)
$$

4. Distribution of $v = \frac{x_1}{x_2}$ where x_1 and x_2 are distributed according to

$$
f(x_1) \, dx_2 = y_0 x_1^m k_{n_1}(x_1) \, dx_1
$$

$$
\phi(x_2) \, dx_2 = y_0 x_2^m k_{n_2}(x_2) \, dx_2 \quad (12)
$$

The distribution of v is given by

$$
dF = dv \int_0^\infty y_0 y_0^1 v^{m_1 x_1^m} x_2^m k_{n_1}(v x_1) x_2^m k_{n_2}(x_2) \, dx_2
$$

$$
= y_0 y_0^1 v^{m_1} dv \int_0^\infty x_2^{m_1 + m_2} k_{n_1}(v x_1) k_{n_2}(x_2) \, dx_2 \quad (13)
$$

It is shown that the value of the integral is

$$
= 2^{m_1 + m_2} v^{m_1} \Gamma(\lambda) \Gamma(\mu) \int_0^\infty x_2^\mu \, dx_2
$$

where

$$
\lambda = \frac{m_1 + m_2 + n_1 - n_2}{2} + 1
$$

$$
\mu = \frac{1}{2} (m_1 + m_2 - n_1 + n_2) + 1
$$

$$
\nu = (m_1 + m_2) - (n_1 + n_2) + 1
$$

By putting $x_2 = \tan \theta$, the integral in (14) can be expanded in powers of $1 - v^2$ and we find the value of the integral to be

$$
= \frac{\Gamma \left(\frac{\nu + 1}{2} \right) \Gamma \left(\frac{k + 1}{2} \right)}{\Gamma \left(\frac{\nu + k}{2} + 1 \right)} \quad (15)
$$
On a Bessel Function of Second Kind & Wilks' Z-Distribution

where
\[k = 2\mu + 2\lambda - v - 2 \]
\[\alpha = 1 - v^2 \]

and \(F \) is the Hypergeometric Function.

Substituting from (14) and (15) in (13), we get
\[
dF = y_0 y_0' y_0'' \frac{\Gamma(\lambda) \Gamma(\mu) \Gamma\left(\frac{\nu + 1}{2}\right) \Gamma\left(\frac{k + 1}{2}\right)}{\Gamma\left(\frac{\nu + k + 1}{2}\right)} \times v^{m+m} F\left(\frac{k + 1}{2}, \lambda, \frac{\nu + k + 1}{2} + 1, 1 - v^2\right) dv
\]
(16)

where \(y_0 = 1/2^{m-1} \Gamma\left(m_1 + \frac{1}{2} + n_1\right) \Gamma\left(m_1 + 1 - n_1\right) \)
and
\(y_0' = 1/2^{m-1} \Gamma\left(m_1 + \frac{1}{2} + n_2\right) \Gamma\left(m_1 + 1 - n_2\right) \)

(16) is the required distribution of \(x_1/x_2 \).

5. Particular Cases.—Put \(m = a_1 + a_2 - 1 \)
\[n = a_1 - a_2 \]

We have for the distribution (3) the \(r \)th moment about the origin, given by
\[
\mu_r' = 2^r \frac{\Gamma\left(a_1 + \frac{r}{2}\right) \Gamma\left(a_2 + \frac{r}{2}\right)}{\Gamma(a_1) \Gamma(a_2)}
\]
(17)

The distribution of \(v = \frac{t_1}{t_2} \) is given by, taking \(m_1 = m_2 = a_1 + a_2 - 1 \), \(n_1 = n_2 = a_1 - a_2 \) and substituting in (16)
\[
dF = \frac{2B(2a_1, 2a_2)}{B^2(a_1, a_2)} v^{n_1-1} F\left(2a_1, a_1 + a_2, 2a_1 + 2a_2, 1 - v^2\right) dv
\]
(18)

where \(B \) is the Beta-Function.

In particular put \(a_1 = a_2 = \frac{1}{2} (N - 1) \) and the constant \(B \) (in \(t = 2 (\sqrt{Z/B}) = 1 \).

Then \(v = \frac{t_1}{t_2} = \frac{Z_1}{Z_2} \) is distributed as
\[
dF = \frac{2B(2a_1, 2a_1)}{B^2(a_1, a_1)} v^{n_1-1} F\left(2a_1, a_1 + a_2, 2a_1, 1 - v^2\right) dv
\]
(19)

Substituting \(v \) for \(v^2 \), we get the distribution of \(\frac{Z_1}{Z_2} \) as
\[
dF = \frac{B(2a_1, 2a_1)}{B^2(a_1, a_1)} v^{n_1-1} F\left(2a_1, a_1 + a_2, 4a_1, 1 - v\right) dv
\]
(20)

\(\Lambda^2 \)
which is the distribution required to test the hypothesis H_1, where Z_1 and Z_2 are distributed according to (2).

REFERENCES

5. .. "Further applications in statistics of $T_m (\lambda)$ Bessel Function," *ibid.*, 1932, 24, 293-350.