A CONGRUENCE PROPERTY OF $\tau(n)$

BY HANSRAJ GUPTA
(Government College, Hoshiarpur)

Received August 27, 1946
(Communicated by Prof. B. S. Madhava Rao)

Ramanathan and, more recently, Bambah and Chowla have proved by different methods involving the use of certain relations between Ramanujan's functions P, Q and R, that

$$\tau(n) \equiv n \sigma_3(n) \pmod{7} \tag{1}$$

where $\tau(n)$ is defined by the relation

$$\sum_{r=1}^{\infty} \tau(n)x^r = x[(1-x)(1-x^2)(1-x^3)\ldots]^2, \quad |x| < 1; \tag{2}$$

and

$$\sigma_3(n) = \sum_{d|n} d^3. \tag{3}$$

I give below a proof which is independent of such relations. All congruences are modulo 7.

We have

$$\sum_{n=1}^{\infty} \tau(n)x^n = x\left(\prod_{r=1}^{\infty} (1-x^r)^3\right)^3$$

$$= x \left(\prod_{r=1}^{\infty} (1-x^r)^3\right)^3$$

$$= x \left(\sum_{s=0}^{\infty} (-1)^s \frac{(2u+1)(2v+1)}{2} \right) \left(\sum_{s=0}^{\infty} (-1)^s (2v+1) \frac{(2v+1)^2}{2}\right).$$

Hence

$$\tau(n) = \sum_{s=0}^{\infty} (-1)^s (2u+1)(2v+1)$$

where u, v run through the non-negative solutions of the equation

$$n = 1 + \frac{7u(u+1)}{2} + \frac{v(v+1)}{2}$$

which can be put in the form

$$8n = 7(2u+1)^2 + (2v+1)^2. \tag{5}$$

If $\binom{n}{7} = -1$, (5) has no solution. Therefore

$$\tau(n) = 0 \text{ when } n^3 = -1. \tag{6}$$

\[\text{End of Document}\]
Also if \(n = 0 \), then from (5)
\[
2v + 1 = 0.
\]
Hence
\[
\tau(7m) = 0. \quad (7)
\]
Now consider the case when \(n \) is equal to an odd prime \(p \) other than 7, such that
\[
\left(\frac{p}{7}\right) = 1.
\]
Then the equation
\[
p = x^2 + 7y^2 \quad (8)
\]
has a unique solution in positive integers \(x, y \) of opposite parity. If \((x_1, y_1)\) be this solution, then
\[
8p = (x_1 + 7y_1)^2 + 7(x_1 - y_1)^2 = (x_1 - 7y_1)^2 + 7(x_1 + y_1)^2 \quad (9)
\]
provides the two solutions of (5), giving
\[
\tau(p) = 2x_1^2 = 2p = p(p^3 + 1). \quad (10)
\]
In view of the relations (6), (7) and (10), we have
\[
\tau(p) = p\sigma_3(p) \quad (11)
\]
for all primes \(p > 2 \). It holds also when \(p = 2 \) because
\[
\tau(2) = -24 = 2\sigma_3(2).
\]
Using Mordell's identity
\[
\tau(p^\lambda) = \tau(p)\tau(p^{\lambda-1}) = p^{\lambda^2} \tau(p^{\lambda-2}), \quad \lambda \geq 2.
\]
it is now easily shown that
\[
\tau(p^\lambda) = p^{\lambda}\sigma_3(p^\lambda).
\]
Since \(\tau(n) \) and \(\sigma_3(n) \) are both multiplicative functions
\[
\tau(n) = n\sigma_3(n).
\]