THE LOWER ORDER OF THE ZEROS OF AN INTEGRAL FUNCTION (II)

BY S. M. SHAH
(Muslim University, Aligarh, U.P.)

Received November 10, 1944
(Communicated by Dr. M. Ishaq, P.A.Sc.)

1. Let \(f(z) \) be an integral function of finite order \(\rho \). In a previous note\(^1\) I proved that if \(0 < \rho < 1 \) then
\[
\lambda \leq 1 + \frac{\lambda_1}{\lambda_1 - \rho}.
\]
I prove here

Theorem. If \(f(z) \) be an integral function of order \(\rho \) where \(\rho > 0 \) is non-integer\(^2\) then
\[
\lambda \leq \rho + \frac{\lambda_1}{\lambda_1 \rho + \frac{\rho(\rho - 1)}{\rho + 1 - \rho}} \quad (1)
\]
where \(\rho, \lambda, \lambda_1 \) denote the genus, the lower order and the lower order of the zeros of \(f(z) \).

§2. Proof. We have\(^3\)
\[
\log M(r) < A \{ r^\rho + 1 \}
\]
where
\[
I = \int_0^\infty \frac{n(x)}{x^{\rho+1}} \frac{r^\rho + 1}{x + r} \, dx.
\]
We may suppose \(\rho > 1 \). Let\(^4\) \(\lambda_1 < \mu < \rho < \nu \). There exists an infinity of \(R \) such that \(n(R) < R^\mu \).

Let \(N = R^\mu \rho \) and \(r = N^\beta \) where
\[
\beta = \rho - \rho + \frac{\mu}{\mu} (\rho + 1 - \rho).
\]

\(^1\) S. M. Shah, "The Lower Order of the Zeros of an Integral Function," *Journal Indian Math. Soc.*, 1942, 6, No. 2. \(\lambda, \lambda_1 \) have the same meaning.

\(^2\) When \(\rho \) is integer, the result (1) holds but is trivial.

\(^3\) A B K K \(K_1 \) \(K_2 \) are constants.

\(^4\) If \(\lambda_1 = \rho \) then the right-hand side expression of (1) becomes \(\rho \) and (1) is obviously true.
The Lower Order of the Zeros of an Integral Function (II) 163

Hence \(1 < \beta < \frac{p}{\mu} \) and

\[
I = \int_{0}^{N} \int_{N}^{R} \int_{R}^{\infty} = I_1 + I_2 + I_3 \text{ say.}
\]

\[
I_1 < \int_{0}^{N} \frac{K x^\nu r^\theta + 1}{x^\delta + 1 (x + r)} \, dx < K_1 \, r^\theta \, N^\nu - r
\]

\[
= K_1 \exp \left\{ \left(p + \frac{\nu - p}{\beta} \right) \log r \right\}
\] (2)

\[
I_2 < \int_{N}^{R} \frac{n (R) r^\theta + 1}{x^\delta + 1 (x - r)} \, dx
\]

\[
\leq R^\mu \, r^\theta + 1 \left[\int_{N}^{N^\beta} \frac{dx}{r x^\delta + 1} + \int_{N^\beta}^{R} \frac{dx}{x^\delta + \frac{\beta}{p}} \right]
\]

\[
< R^\mu \, r^\theta + 1 \left[\frac{1}{pr N^\beta} + \frac{1}{p + 1} \frac{1}{N^\beta (\rho + 1)} \right]
\]

\[
< \frac{1}{p} \left[\exp \left(p + \frac{\rho - p}{\beta} \right) \log r + \exp \left(\frac{\rho}{\beta} \log r \right) \right]
\] (3)

\[
I_3 < \int_{R}^{\infty} \frac{K x^\nu r^\theta + 1}{x^\delta + 1 (x + r)} \, dx
\]

\[
< \int_{R}^{\infty} K x^{\nu - \theta - 2} r^\theta + 1 \, dx = K_2 \, r^\theta + 1 \, R^\nu - r - 1
\]

\[
= K_2 \exp \left\{ \left(p + 1 + \frac{\rho (v - p - 1)}{\mu \beta} \right) \log r \right\}
\] (4)

Since \(\frac{\rho}{\beta} < p + \frac{\rho - p}{\beta} < p + \frac{\nu - p}{\beta} < p + 1 + \frac{\rho (v - p - 1)}{\mu \beta} \)

we obtain from (2), (3) and (4) that for an infinity of \(r \)

\[
\log M (r) < B \exp \left[\left\{ p + 1 + \frac{\rho (v - p - 1)}{\mu \beta} \right\} \log r \right]
\]
Since $\mu - \lambda_1$ and $\nu - \rho$ may be chosen arbitrarily small we get

$$\lambda \leq p + 1 + \frac{\rho (p - p - 1)}{\lambda_1 (\rho - p) + \rho (p + 1 - \rho)}$$

$$= p + \frac{(p - \rho) \lambda_1}{\lambda_1 (\rho - p) + \rho (p + 1 - \rho)}$$

and the theorem is proved.

§3. Corollary. Given $\rho = \lambda$ and $\rho > 0$ non-integer then $\rho = \rho_1 = \lambda = \lambda_1$.

For

$$\rho = \lambda \leq p + \frac{(p - \rho) \lambda_1}{\lambda_1 (\rho - p) + \rho (p + 1 - \rho)}$$

$$\therefore (p - \rho) \leq \frac{(p - \rho) \lambda_1}{\lambda_1 (\rho - p) + \rho (p + 1 - \rho)}$$

$$\therefore (p + 1 - \rho) (\rho - \lambda_1) \leq 0$$

$$\therefore \rho \leq \lambda_1$$

Hence $\rho = \lambda_1$.