BACTERIAL CHEMOTHERAPY, I: SYNTHESIS OF N1-SUBSTITUTED SULPHANILAMIDES*

BY S. RAJAGOPALAN
(From the Haffkine Institute, Bombay)

Received April 30, 1943
(Communicated by Lt.-Col. S. S. Sokhey, M.A., M.D., I.M.S., F.A.Sc.)

SYSTEMATIC syntheses in the sulphanilamide group in progress at this Institute have as their objective the discovering of hitherto unknown compounds which may be of even greater therapeutic usefulness or devoid of the deleterious effects of those drugs already in clinical usage and the collection of useful information leading to an extension of our present stock of knowledge on the mode of action of these drugs which would ultimately enable the rational evolution of more powerful members of the sulphonamide group.

The view is widely held that compounds with a higher degree or greater range of therapeutic activity than sulphanilamide should be sought among its derivatives with cyclic, particularly heterocyclic, substituents at the sulphonamide radical. The present communication is a further extension of the systematic work undertaken2 to synthesise the above class of compounds with all feasible ring structures and study their physiological activity in relation to their chemical constitution.

The N1-substituted sulphanilamides (Nos. 14–23) that were synthesised in this connection are listed in Table I.

The requisite starting amines were obtained by the methods reported in literature with few modifications, the only exception being 3-amino indotriazine, necessary for the preparation of the corresponding sulphonamide (No. 23). The procedure of De and Datta4 was adopted for the synthesis in good yield of 3-amino indotriazine by condensation of isatin with amino guanidine in glacial acetic acid:

\[
\begin{align*}
\text{Isatin} & \quad + \quad \text{H}_2\text{N}\text{C} \equiv \text{N} \quad \xrightarrow{-2\text{H}_2\text{O}} \quad \text{3-amino indotriazine} \\
\text{Aminoguanidine} &
\end{align*}
\]

* A preliminary note covering part of the material presented in this communication appeared in Current Science.1

100
Bacterial Chemotherapy—I

TABLE I

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Name</th>
<th>M.P./°C.</th>
<th>Nitrogen percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>4-Sulphanilamido acetoephone*</td>
<td>189-90</td>
<td>9.4</td>
</tr>
<tr>
<td>15</td>
<td>6-Sulphanilamido acetoephone</td>
<td>176-77 dec.</td>
<td>9.5</td>
</tr>
<tr>
<td>16</td>
<td>6-Sulphanilamido acetonaphthone hydrochloride</td>
<td>200-02 dec.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6(N₄, Acetyl sulphanilamido) acetoephone</td>
<td>151-52 dec.</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>6-Sulphanilamido acetonaphthone hydrochloride</td>
<td>169</td>
<td>8.1</td>
</tr>
<tr>
<td>19</td>
<td>6-(N₄, Acetyl sulphanilamido) acetonaphthone</td>
<td>189 dec., sintg. 185</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1-N4-Acetyl sulphanilamido guanidine</td>
<td>117-18 dec.</td>
<td>25.4</td>
</tr>
<tr>
<td>21</td>
<td>3, 6-N4-Acetyl sulphanilamido, 1:2:4-triazole</td>
<td>210 dec.</td>
<td>25.1</td>
</tr>
<tr>
<td>22</td>
<td>5-Sulphanilamido benzotriazole</td>
<td>135-37</td>
<td>24.0</td>
</tr>
<tr>
<td>23</td>
<td>5-Sulphanilamido indazole</td>
<td>243-44 dec.</td>
<td>19.2</td>
</tr>
<tr>
<td>24</td>
<td>5(N₄, Acetyl sulphanilamido) indazole</td>
<td>262 dec.</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>7-Sulphanilamido indazole</td>
<td>249-50 dec.</td>
<td>19.3</td>
</tr>
<tr>
<td>26</td>
<td>1-Sulphanilyl indole</td>
<td>139</td>
<td>10.1</td>
</tr>
<tr>
<td>27</td>
<td>1(N₄, Acetyl sulphanilyl) indole</td>
<td>146-47</td>
<td>9.0</td>
</tr>
<tr>
<td>28</td>
<td>3-Sulphanilamido indotriazine</td>
<td>200-01 dec.</td>
<td>24.2</td>
</tr>
<tr>
<td>29</td>
<td>3(N₄, Acetyl sulphanilamido) indotriazine</td>
<td>261-62 dec.</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>m-Hydroxy benzylidene sulphanilamide</td>
<td>138</td>
<td>10.3</td>
</tr>
<tr>
<td>31</td>
<td>p-Nitrobenzylidene sulphanilamide</td>
<td>indef.</td>
<td>13.5</td>
</tr>
<tr>
<td>32</td>
<td>p-Nitrobenzylidene sulphathiazole</td>
<td>indef.</td>
<td>14.0</td>
</tr>
<tr>
<td>33</td>
<td>m-Nitrobenzylidene sulphathiazole</td>
<td>220-22 dec.</td>
<td>13.9</td>
</tr>
</tbody>
</table>

* Literature gives the melting point 208°C.

The amino bodies were condensed severally with crystallised acetyl sulphanilyl chloride in pyridine medium and the resulting N₄-acetyl sulphanilamide derivatives subjected to the hydrolytic action of hot dilute hydrochloric acid, with one exception, namely, No. 22, which was obtained by hydrolysis of its N₄-acetyl derivative with hot dilute (10 parts of 10 per cent. sodium hydroxide. Except in the case of the N₄-acetyl derivatives of guanidine (No. 17) and triazole (No. 18), where the attempts to isolate the final compounds were not met with success, hydrolysis to the sulphonamides proceeded smoothly.

Examination of the Schiff’s bases derived from the sulphonamides, as also those of the sulphones, has disclosed that while most of them are as active as the parent compounds themselves, at least in experimental streptococcal infections, a few of them were remarkably much less toxic. These compounds are chemically rather unstable and their activity is conceived to be due to their cleavage into the original sulphonamides, on oral administration. While this mechanism of action holds for most members of this group, there are a few instances for which this explanation would not appear...
acceptable without further modification. Thus, for example, p-hydroxy benzylidene sulphanilamide is said to be more active than sulphanilamide itself. Again, the high activities claimed for the N^4-p, nitrobenzylidene sulphonamides are noteworthy. It is also of interest that both o-nitrobenzylidene and m-hydroxy benzylidene sulphapyridines should be rated superior to sulphapyridine or sulphanilamide against streptococci, but inferior to sulphapyridine against pneumococci. The results with the sulphapyridine derivatives are remarkable: while a decreased activity towards the pneumococcus is conceivable, it is difficult to understand how sulphapyridine, if it is the active agent, could give an increased activity against streptococci, when administered as compounds which liberate it in the body. However, if these results are true, the only explanation that could be advanced would be that the "aldehyde half" of the molecule or its derivative elaborated in vivo exerts a modifying action on the chemotherapeutic efficacy of the "active half". The Schiff's bases (Nos. 36-39) shown in the table, besides a few others already reported in literature, were therefore prepared in order to investigate in some detail the mechanism of action of Schiff's bases derived from the sulphonamides.

The compounds reported herein are being investigated as to their usefulness in experimental bacterial infections with particular reference to plague in mice at this Institute.

Experimental

The synthesis of the final sulphonamides having been effected according to the customary procedures, the experimental details have been omitted.

3-Amino indotriazine.—A mixture of aminoguanidine carbonate (2·74 gm.) and isatin (2·94 gm., 1 mol.) in glacial acetic acid (100, c.c.) was gently refluxed for one half hour, diluted with water and basified with excess of ammonia. The 3-amino indotriazine recrystallised from alcohol as yellow needles, melting at 195-96°; yield-4·5 gm. (Found: N, 37·3; C$_6$H$_7$N$_5$ requires N, 37·8 %.)

The Schiff's bases (Nos. 36-39) were prepared by boiling together alcoholic solutions of molecular proportions of the appropriate aldehyde and the sulphonamide until crystal-separation occurred. The reaction mixture was cooled, the separated solid filtered and washed free of any traces of unreacted initial compounds by means of alcohol. These could not be recrystallised from solvents owing to their instability; they consisted of pale plates.

Except Nos. 17 and 18, the sulphonamides (Nos. 14-16, 19-23) were all recrystallised from alcohol; Nos 17 and 18 were obtained from water, all of
them (Nos. 14–22) were obtained as characteristic colourless needles, the exception being No. 18 which formed colourless prisms. The indotriazine derivative consisted of yellow needles.

The yields of all the compounds were good.

The author's grateful thanks are due to Lt.-Col. Sokhey for his kind interest and the Lady Tata Memorial Trust for the award of a Research Scholarship.

Summary

With the object of ascertaining the relative antibacterial merits of sulphonamides derived, among a few others, chiefly from heterocyclic ring systems, a series of N¹-substituted sulphonamides containing the triazole, benzotriazole, indazole, indole, and indotriazine rings have been synthesised. Additional compounds reported are the sulphonamide derivatives of acetophenone and guanidine.

A few Schiff's bases derived from the sulphonamides have also been prepared for their possible therapeutic usefulness and for a study of the mode of action of the sulphonamido Schiff’s bases in general.

REFERENCES

3. Merck .. Fr., 1939, 847, 244; C.A., 1941, 35, 5513.
4. De and Dutta .. Ber., 1931, 64, 2604.
5. Henry and Gray .. Br., 1931, 419, 265.
 Fourneau et al. .. Compt. rend. soc. biol., 1937, 205, 299.
 ——— and Despois .. Br., 1937, 456, 914.