ON AN ASYMPTOTIC FORMULA IN PARTITIONS

BY HANSRAJ GUPTA

(From the Department of Mathematics, Govt. College, Hoshiarpur)

Received January 26, 1942

(Communicated by Dr. C. N. Srinivasiengar)

If \(p_k(n) \) denote the number of partitions of \(n \) into exactly \(k \) summands, or what is the same thing, into summands the largest of which is \(k \), then Erdős and Lehner have recently proved the asymptotic formula:

\[
\frac{1}{k!} \binom{n-1}{k-1}
\]

true for values of \(n \) for which

\[
k = o \left(n^\frac{3}{2} \right).
\]

In this note, I give an elementary proof of the above result.

2. Identically, we have

\[
p_k(n) = p_k(n-k) + p_{k-1}(n-k) + p_{k-2}(n-k) + \cdots + p_1(n-k),
\]

because if a partition of \(n \) in which the largest summand is \(k \), be written down, and one element equal to \(k \) be deleted from it, we are left with a partition of \((n-k) \) in which the largest summand is either \(k \) or some smaller integer.

From (2) we immediately obtain the recurrence formula:

\[
p_k(n) = p_k(n-k) + p_{k-1}(n-1);
\]

whence

\[
p_k(n) + p_k(n-1) + p_k(n-2) + \cdots + p_k(n-k+1) = \sum_{m=k}^{\infty} p_{k-1}(m-1) - 1
\]

3. We proceed to prove the

THEOREM. For values of \(j \geq 1 \),

\[
\frac{1}{j!} \binom{n-1}{j-1} \leq p_j(n) \leq \frac{1}{j!} \binom{n+c_j}{j-1}
\]

where \(c_j \) is a function of \(j \) alone.

The theorem evidently holds for \(j = 1 \) with \(c_j = 0 \). Assuming it to be true for \(j \leq k-1 \), we notice that the right hand side of (4) is

\[
\geq \frac{1}{(k-1)!} \sum_{m=k}^{\infty} \binom{m-2}{k-2} \frac{1}{k!} \binom{n-1}{k-1}.
\]

Of the \(k \) terms on the left hand side of (4), the greatest is \(p_k(n) \), therefore

\[
k. \quad p_k(n) \geq \frac{1}{(k-1)!} \binom{n-1}{k-1}, \text{ i.e. } p_k(n) \geq \frac{1}{k!} \binom{n-1}{k-1}.
\]
Again the right hand side of (4) is
\[\leq \frac{1}{(k-1)!} \sum_{m=n}^{n-1-k} \binom{m-1+c_{k-1}}{k-2} = \frac{1}{(k-1)!} \binom{n+c_{k-1}}{k-1}, \]
while the left hand side of (4) is
\[k p_k(n-k+1). \]
Hence
\[p_k(n-k+1) \leq \frac{1}{k} \binom{n+c_{k-1}}{k-1}, \]
i.e.,
\[p_k(n) \leq \frac{1}{k} \binom{n+c_{k-1}}{k-1}, \]
where \(c_k = c_{k-1} + (k-1), \) so that \(c_k = \frac{1}{2} k (k-1). \)
The theorem is now readily proved by inductive reasoning.

4. From what has been proved above, we have
\[1 \leq k! \frac{p_k(n)}{\binom{n-1}{k-1}} \leq \frac{n+c_{k-1}}{n-1} \frac{n+c_{k-1}-1}{n-2} \frac{n+c_{k-1}-2}{n-3} \ldots \frac{n+c_{k-1}-k+2}{n-k+1}. \]
(5)
The greatest factor on the right hand side of (5) is
\[\frac{n+c_{k-1}-k+2}{n-k+1} = \left\{ 1 + \frac{k^2 - k + 2}{2(n-k+1)} \right\}. \]
Therefore the said product is
\[\leq \left\{ 1 + \frac{k^2 - k + 2}{2(n-k+1)} \right\}^{k-1}. \]
Let \(n = \frac{k^3}{q}, \) where \(q \) is any finite quantity evidently \(\leq k^3, \) then
\[\left\{ 1 + \frac{k^2 - k + 2}{2(n-k+1)} \right\}^{k-1} < \lim_{k \to \infty} \left(1 + \frac{q}{2k} \right)^k = e^{q/2}. \]
Hence
\[1 \leq k! \frac{p_k(n)}{\binom{n-1}{k-1}} < e^{q/2}, \text{ where } q = \frac{k^3}{n}. \]
(6)
Thus when \(k = o\left(n^{1/3} \right), \) we must have
\[p_k(n) \sim \frac{1}{k!} \binom{n-1}{k-1}. \]

REFERENCE