ON THE NUMBER OF REPRESENTATIONS OF A NUMBER AS THE SUM OF THE SQUARE OF A PRIME AND A SQUAREFREE INTEGER

BY S. S. PILLAI
(From the Department of Mathematics, Annamalai University)

Received October 27, 1939
(Communicated by Prof. B. S. Madhava Rau)

Let \(R(n) \) denote the number of representations of \(n \) in the form
\[
n = p^2 + f,
\]
where \(p \) is a prime, and \(f \) is squarefree; and
\[
A(n) = \prod \left(1 - \frac{2}{q(q-1)} \right),
\]
where \(q \) runs through all primes for which \(n \) is a quadratic residue.

Then Paul Erdos\(^1\) has proved that, when \(n \not\equiv 1 \pmod{4} \),
\[
R(n) > 0.
\]
The object of this note is to prove,

Theorem: When \(n \not\equiv 1 \pmod{4} \),
\[
R(n) \sim \frac{2 \sqrt{n}}{\log n} A(n).
\]
The proof is immediate from Erdos' paper.

Lemma: When \(m \) is divisible by neither 4 nor any prime which is a non-quadratic residue of \(n \), and \(s \) denotes the number of different odd prime factors of \(m \), then the number of solutions of the congruence
\[
x^2 \equiv n \pmod{m}
\]
is \(2^s \).

This is a part of Satz 88 in Landau's *Vorlesungen über Zahlentheorie*, Vol. I.

With the help of this, following Erdos, we easily get, by the usual method, that the number of \(p \)'s for which \(n - p^2 \) is divisible by any prime \(q \ll M \), is
\[
\frac{\sqrt{n}}{\log n} \left\{ 1 - \prod_{q \ll M} \left(1 - \frac{2}{q(q-1)} \right) \right\} + O \left(\frac{\sqrt{n}}{(\log n)^2} \cdot 2^T \right),
\]
where \(q \) runs through all primes for which \(n \) is a quadratic residue and \(T \) is the number of such \(q \)'s \(\ll M \), and the constant in \(O \) is independent of \(M \).

Representations of a Number as the Sum of the Square of a Prime

As in Erdős' paper, we divide the odd primes into four classes \(q, r, s, t \):

1. \(q \leq M \)
2. \(M < r \leq (\log n)^2 \)
3. \((\log n)^2 < s \leq \sqrt{n}/(\log n)^2 \)
4. \(\sqrt{n}/(\log n)^2 < t \leq \sqrt{n} \).

From (1), we have disposed of \(q \)'s.

From the same paper, the number of \(p \)'s for which \(n \equiv p^2 \) is divisible by an \(r^2 \) is less than

\[
\sum_{r} \frac{\sqrt{n}}{\log \left(\sqrt{n}/r \right)^2} \cdot \frac{2c}{r (r-1)} = O \left(\frac{\sqrt{n}}{M \log n} \right).
\]

Again from the same paper, the number of \(p \)'s for which \(n \equiv p^2 \) is divisible by \(s \) or \(t \) or both is

\[
O \left(\sqrt{n}/(\log n)^2 \right).
\]

Hence from (1), (2), (3), the number of primes \(p \) for which \(n \equiv p^2 \) is not divisible by the square of any prime is

\[
\frac{\sqrt{n}}{\log \sqrt{n}} \prod_{q \leq M} \left(1 - \frac{2}{q (q-1)} \right) + O \left(\frac{\sqrt{n}}{(\log n)^2} \cdot 2^t \right) + O \left(\frac{\sqrt{n}}{M \log n} \right) + O \left(\frac{\sqrt{n}}{(\log n)^2} \right).
\]

Since \(A(n) \) is convergent, given any positive \(\delta \), we can choose an \(M \) so that

\[
(a) \quad \left| A(n) - \prod_{q \leq M} \left(1 - \frac{2}{q (q-1)} \right) \right| < \delta,
\]

\[
(b) \quad \frac{1}{M} < \delta,
\]

\[
(c) \quad 2^t \leq 2^M < \delta \log n.
\]

Hence, from (4),

\[
R(n) = \frac{\sqrt{n}}{\log \sqrt{n}} A(n) + O \left(\frac{\delta \cdot \sqrt{n}}{\log n} \right) + O \left(\frac{\sqrt{n}}{(\log n)^2} \right).
\]

Now \(\delta \) is arbitrary and the constant in \(O \) is independent of \(M \) and \(\delta \). Therefore,

\[
R(n) \sim \frac{2 \sqrt{n}}{\log n} A(n).
\]

So the Theorem is proved.

As a matter of fact, if we put \(M = \log \log n \) in (4), we get that

\[
R(n) = \frac{2 \sqrt{n}}{\log n} A(n) + O \left(\frac{\sqrt{n}}{(\log n \cdot \log \log n)} \right).
\]
ON NUMBERS WHICH ARE NOT MULTIPLES OF ANY OTHER IN THE SET

BY S. S. PILLAI

(From the Department of Mathematics, Annamalai University)

Received October 27, 1939

(Communicated by Prof. B. S. Madhava Rau)

LET

\[F(x) = \sum_{b_r \leq x} \frac{1}{b_r} \]

where \(b_1, b_2, b_3, \ldots \) are numbers such that no number in the set is a multiple of any other in the same set. Then Felix Behrend\(^1\) has proved that

\[F(x) = O \left(\frac{\log x}{\sqrt{\log \log x}} \right). \]

In this note I prove the following:

THEOREM: For an infinite number of sets

\[F(x) > \left(\frac{e^B}{4 \sqrt{2 \pi}} - 1 \right) \frac{\log x}{\sqrt{\log \log x}}. \]

By combining the two results we get

\[\text{Max. } F(x) \sim A \frac{\log x}{\sqrt{\log \log x}}, \]

where \(A \) is a constant.

The determination of \(A \) seems to be difficult.

Let \(q_v \) denote a number which is composed of \(v \) prime factors, where each prime factor is counted according to its multiplicity.

\[S_v(x) = \sum_{q_v \leq x} \frac{1}{q_v}. \]

\(p \) stands for a prime.

\[T_v(x) = \sum_{p \leq x^{1/2}} \left(1 + \log \left(1 - \log p / \log x \right) / (\log \log x - D) \right)^{1/p}, \]

where \(D = 2 \log 2 - B + O(\delta) \).

We assume that

\[\nu \leq (1 + \delta) (\log \log x - D), \]

\(^2\) \(B \) is the constant in \(\sum_{p \leq x} \frac{1}{p} = \log \log x + B + O(1). \)
where δ is an arbitrarily small positive quantity.

\[k = 1 + \delta. \]

Lemma 1. \(\sum_{p \leq x} \frac{\log p}{p} \leq (1 + \delta) \log x, \text{ when } x > c. \)

Lemma 2. \(\sum_{p \leq x} \frac{1}{p} \geq \log \log x + B - \delta, \text{ where } x > c. \)

These two are immediate consequences of well-known results.

Lemma 3. \(T_\nu(x) \geq \log \log x - D. \)

Let \(\log (1 - \log p/\log x) \geq 11 - y \log p/\log x \)

Then when \(p \leq \sqrt{x}, \quad y \leq \frac{\log (1 - \frac{1}{x})}{1} = 2 \log 2. \)

So,

\[\left[\frac{1 + \log (1 - \log p/\log x)}{\log x - D} \right] \]

\[\geq 1 + \frac{\log \log x - D}{\log (1 - \log p/\log x)} \log (1 - \log p/\log x) \]

\[\geq 1 - \frac{2k \log 2 \log p}{\log x} \]

Hence

\[T_\nu(x) \geq \sum_{p \leq \sqrt{x}} \frac{1}{p} - 2k \log 2 \sum_{p \leq \sqrt{x}} \frac{\log p}{p} \]

\[\geq \log \log x + B - \delta - \log 2 - k (1 + \delta) \log 2 \]

\[\geq \log \log x - D. \]

Lemma 3. \(S_\nu(x) \geq (\log \log x - D)^\nu/\nu!, \text{ when } x > e^{c^{\nu^{-1}}}. \)

Let us assume that the result is true for \(\nu. \)

Then, when \(x > e^{c^{\nu}}, \)

\[(\nu + 1) S_{\nu + 1}(x) \geq \sum_{p \leq \sqrt{x}} \frac{1}{p \cdot q}, \quad \sum_{p \leq \sqrt{x}} \frac{1}{q} \leq x \]

\[= \sum_{p \leq \sqrt{x}} \frac{1}{p} \sum_{1/p \leq q} \frac{1}{q} \]

\[\geq \sum_{p \leq \sqrt{x}} \frac{1}{p} \sum_{1/p \leq q} \frac{1}{q} \]

\[= \sum_{p \leq \sqrt{x}} \frac{1}{p} S_\nu\left(\frac{x}{p}\right) \]

\[\geq \sum_{p \leq \sqrt{x}} \frac{1}{p} \left(\log \log \frac{x}{p} - D \right)^\nu/\nu ! \]

\[= \frac{(\log \log x - D)^\nu}{\nu !} T_\nu(x) \]

\[\geq (\log \log x - D)^{\nu + 1}/\nu !. \]
Hence if the result is true for \(v \), it is true for \(v + 1 \) also.

But \(S_1(x) > \log \log x - D \).

So the result follows by induction.

Now we are in a position to prove our theorem.

Put \(v = [\log \log x] \).

Then

\[
(\log \log x - D)\nu / \nu! = \left\{ \frac{e^{\nu}}{4 \sqrt{2\pi}} + O(\delta) \right\} \times \frac{\log x}{\sqrt{(\log \log x)}}.
\]

Further the numbers \(q_v \)'s are obviously of type \(b \); because no \(q_v \) is a multiple of any other \(q_v \). Therefore,

\[
S_v(x) = F(x).
\]

The theorem follows immediately from (1) and (2).