NOTE ON SOME FORMULÆ INVOLVING THE
LAGUERRE AND HERMITIAN POLYNOMIALS
AND BESSEL FUNCTIONS

By V. R. Thirunenkata Char
(Department of Mathematics, Central College, Bangalore)

Received September 2, 1939
(Communicated by Prof. B. S. Madhava Rao)

§ 1. The purpose of this note is to give simple derivations of some well-
known formulæ involving the Laguerre and the Hermitian polynomials
and Bessel functions. Incidentally some further relations are derived
which appear to be new.

§ 2. The generalised Laguerre polynomial $L_n^{(a)}(x)$ is defined by

$$L_n^{(a)}(x) = \frac{e^x x^{-a}}{n!} \frac{d^n}{dx^n} (e^{-x} x^n)$$

(1)

and satisfies the orthogonality relations:

$$\int_0^\infty e^{-t} t^a L_n^{(a)}(t) L_m^{(a)}(t) \, dt = \begin{cases} 0, & n \neq m \\ \Gamma(n + a + 1), & n = m. \end{cases}$$

(2)

By direct integration by parts we get

$$\int_0^\infty e^{-t} t^m + a L_n^{(a)}(t) \, dt = \begin{cases} 0, & m < n \\ \frac{(-1)^m m!}{n! (m - n)!} \Gamma(m + a + 1), & m \geq n \end{cases}$$

(3)

From this we immediately derive by term-by-term integration

$$\int_0^\infty e^{-t} t^{n + a/2} J_a(2\sqrt{xt}) L_n^{(a)}(t) \, dt = \frac{e^{-x} x^{n + a/2}}{n!}.$$

(4)

Applying the Fourier-Bessel integral theorem we get Wigert's formula

$$L_n^{(a)}(x) = \frac{e^x x^{-a/2}}{n!} \int_0^\infty e^{-t} t^{n + a/2} J_a(2\sqrt{xt}) \, dt.$$

(5)

1 This is easily justified. A similar remark is to be understood with reference to
other inversions of limit-processes occurring throughout the paper.
If we now assume
\[
\int_0^\infty e^{-xt} x^{n+1} dt = \frac{\Gamma(n+\alpha+1)}{n!} \frac{x^n}{a^n} (x) = \frac{e^{-\frac{x}{2}} x^{\alpha/2}}{n!}
\]
we get using (2) and (4)
\[
\frac{\Gamma(n+\alpha+1)}{n!} a_n (x) = \frac{e^{-\frac{x}{2}} x^{\alpha/2}}{n!}
\]
We thus get Hille's generating function for \(L_n^{(a)} (x)\).

\[
\sum \frac{L_n^{(a)} (t)}{\Gamma(n+\alpha+1)} x^n = e^{\frac{x}{2}} \frac{\Gamma(n+\alpha+1)}{n!} (x) \quad (a > -1) \quad (6)
\]

\S3. If we put \(n = 0\) in (4) we get
\[
\int_0^\infty e^{-\frac{x}{2}} x^\alpha J_a (2 \sqrt{x} t) \, dt = e^{-\frac{x}{2}} x^\alpha
\]
or setting \(2 \sqrt{x} t = au, a^2/4x = \phi^2\), this becomes
\[
\int_0^\infty e^{-\phi^2 u^2} J_\alpha (au) u^{\alpha+1} du = \frac{a^\alpha}{(2 \phi^2)^{\alpha+1}} \exp \left(- \frac{a^2}{4 \phi^2} \right)
\]
which is Weber's first exponential integral.\(^2\)

Again from (6) we have
\[
\sum \frac{L_m^{(a)} (t)}{\Gamma(m+\alpha+1)} y^m = e^{\frac{y}{2}} \frac{\Gamma(m+\alpha+1)}{m!} (yt) \quad (a > -1)
\]

Multiplying the two series we get
\[
\sum \frac{(xy)^m}{\Gamma(n+\alpha+1)} \frac{L_n^{(a)} (t)}{\Gamma(n+\alpha+1)} \frac{L_m^{(a)} (t)}{\Gamma(m+\alpha+1)} x^n y^m = e^{x+y} (xyt^2) - \frac{a}{2} J_a (2 \sqrt{x} t) J_a (2 \sqrt{y} t).
\]

Multiplying by \(e^{-t} t^a\) and integrating from 0 to \(\infty\) we get
\[
\sum \frac{(xy)^m}{\Gamma(n+\alpha+1)} \frac{L_n^{(a)} (t)}{\Gamma(n+\alpha+1)} \frac{L_m^{(a)} (t)}{\Gamma(m+\alpha+1)} \cdot \int_0^\infty e^{-t} t^a J_a (2 \sqrt{x} t) J_a (2 \sqrt{y} t) \, dt.
\]

Put \(2x = a^2/2\phi^2, 2y = b^2/2\phi^2, 2t = 2\phi^2 u^2\). We then get
\[
\sum \frac{(ab/4\phi^2)^{a+b}}{\Gamma(n+\alpha+1)} = 2\phi^2 \cdot \exp \left(\frac{a^2 + b^2}{4 \phi^2} \right) \int_0^\infty e^{-\rho^2 u^2} J_a (au) J_a (bu) \, du u
\]

\(^2\) Watson, Bessel Functions, pp. 394-95.
Note on Formula Involving Laguerre & Hermitian Polynomials

or
\[
\int_0^\infty e^{-r^2 u^2} J_a (au) J_a (bu) \, du = \frac{1}{2a^2} \exp \left(- \frac{a^2 + b^2}{4a^2} \right) I_a \left(\frac{ab}{2a^2} \right)
\]

which is Weber's second exponential integral.\(^2\)

§ 4. Now consider the integral
\[
\int_0^\infty e^{-\frac{t}{1-x}} \cdot e^{-t} \cdot I_n^{(a)} (t) \, dt.
\]

By (5) this is equal to
\[
\frac{1}{n!} \int_0^\infty e^{-kt} \frac{a}{2} \, dt \int_0^\infty e^{-u} \frac{a}{2} \, J_a (2\sqrt{t}u) \, du, \quad k = \frac{x}{1-x}
\]

or
\[
= \frac{1}{n!} \int_0^\infty e^{-u} \frac{a}{2} \, du \int_0^\infty e^{-kt} \frac{a}{2} \, J_a (2\sqrt{t}u) \, du.
\]

Setting \(2t = \xi^2, 2u = \nu^2, 2\sqrt{tu} = \xi \nu, \) this becomes
\[
\frac{1}{n!} \frac{1}{2n+a} \int_0^\infty e^{-\frac{\nu^2}{2}} \nu^{2n+a+1} \, d\nu \int_0^\infty e^{-\frac{k\xi^2}{2}} J_a (\xi \nu) \xi^{a+1} \, d\xi
\]

\[
= \frac{1}{n!} \frac{1}{2n+a} \frac{1}{k^{a+1}} \int_0^\infty e^{-\frac{\nu^2}{2}} \left(1 + \frac{1}{k} \right) \nu^{2n+2a+1} \, d\nu, \quad \text{by (7)}
\]

\[
= (1-x)^{a+1} \cdot \frac{\nu^{2n}}{n!} \Gamma (n+a+1).
\]

Thus\(^3\)
\[
\int_0^\infty e^{-\frac{t}{1-x}} \cdot e^{-t} \cdot I_n^{(a)} (t) \, dt = (1-x)^{a+1} \frac{\Gamma (n+a+1)}{n!} x^n.
\]

(9)

Now assume:
\[
e^{-\frac{tx}{1-x}} = \sum a_n (x) \cdot I_n^{(a)} (t).
\]

We then find, using (9), \(a_n (x) = x^n (1-x)^{a+1}.\)

Thus
\[
\sum I_n^{(a)} (t) \cdot x^n = \frac{e^{-\frac{tx}{1-x}}}{(1-x)^{a+1}} \quad (a > -1)
\]

(10)

which is the ordinary generating function for \(I_n^{(a)} (x).\)

§ 5. The Hermitian polynomials are defined by
\[
e^{-x^2} H_n (x) = \frac{d^n}{dx^n} (e^{-x^2}).
\]

\(^2\) This result may however be obtained more simply by directly using (1).

\(^3\) This result may however be obtained more simply by directly using (1).
By direct integration by parts we find
\[\int_{-\infty}^{+\infty} e^{-\beta t} H_{2n+1}(t) \cos 2xt \, dt = 0 \]
\[\int_{-\infty}^{+\infty} e^{-\beta t} H_{2n}(t) \cos 2xt \, dt = (-1)^n (2x)^{2n} \sqrt{\pi} e^{-x^2} \] (11)
\[\int_{-\infty}^{+\infty} e^{-\beta t} H_{2n}(t) \sin 2xt \, dt = 0 \]
\[\int_{-\infty}^{+\infty} e^{-\beta t} H_{2n+1}(t) \cos 2xt \, dt = (-1)^n (2x)^{2n+1} \sqrt{\pi} e^{-x^2} \] (12)

If we now assume
\[\cos 2xt = \sum a_n (x) H_n (t) \], we find \[a_{2n+1} = 0 \], \[a_{2n} = \frac{e^{-x^2} x^{2n}}{(2n)!} \].

Thus
\[e^{x^2} \cos 2xt = \sum (-1)^n \frac{H_{2n}(t)}{(2n)!} x^{2n} \] (13)
Similarly
\[e^{x^2} \sin 2xt = \sum (-1)^{n+1} \frac{H_{2n+1}(t)}{(2n+1)!} x^{2n+1} \] (14)

which may be considered as alternative generating functions for \(H_n (x) \).

In particular for \(x = 1 \) we obtain the known relations
\[\sum (-1)^n \frac{H_{2n}}{(2n)!} x^n = \cos 2t \]
\[\sum (-1)^n \frac{H_{2n+1}}{(2n+1)!} x^n = -\sin 2t \] (14)

Again in the formulae (13) replace \(x \) by \(\sqrt{x} \), \(t \) by \(\sqrt{t} \), we get
\[e^{x^2} \cos (2 \sqrt{xt}) = \sum (-1)^n \frac{H_{2n}}{(2n)!} (\sqrt{t})^n \]
\[x^{-1} e^{x^2} \sin (2 \sqrt{xt}) = \sum (-1)^{n+1} \frac{H_{2n+1}}{(2n+1)!} (\sqrt{t})^n \] (15)

Also if in (6) we take \(a = -\frac{1}{2} \) and \(+\frac{1}{2} \) respectively we get
\[\sum \frac{I_{\alpha}(\beta t)}{(n + \frac{1}{2})} x^n = e^x (xt)^{\frac{1}{2}} J_{-\frac{1}{2}} (2 \sqrt{xt}) = \frac{e^x}{\sqrt{\pi}} \cos (2 \sqrt{xt}) \]
\[\sum \frac{I_{\alpha}(\beta t)}{(n + \frac{3}{2})} x^n = e^x (xt)^{-\frac{1}{2}} J_{\frac{1}{2}} (2 \sqrt{xt}) = \frac{e^x}{\sqrt{\pi}} \sin (2 \sqrt{xt}) \] (16)

Comparing (15) and (16) we get Szegö's well-known relations

\[
\begin{align*}
H_{2n} \left(\sqrt{t} \right) &= (-1)^n 2^{2n} n! \, I_n \left(-\frac{1}{2} \right) \\
H_{2n+1} \left(\sqrt{t} \right) &= (-1)^{n+1} 2^{2n+1} n! \, t \, I_n \left(\frac{1}{2} \right)
\end{align*}
\]

(17)

§ 6. Now take \(a = -\frac{1}{2} \) in (10) and use (17). We get, after interchanging \(x \) and \(t \) and writing \(x^2 \) and \(t^2 \) in place of \(x \) and \(t \),

\[
\sum (-1)^n \frac{H_{2n} (x)}{2^{2n} \cdot n!} t^{2n} = \frac{e^{-\frac{x^2}{1-t^2}}}{\sqrt{1-t^2}}.
\]

Multiplying by \(e^{-x^2} H_{2n} (x) \) and integrating from \(-\infty\) to \(+\infty\) we get

\[
\int_{-\infty}^{+\infty} e^{-\frac{x^2}{1-t^2}} H_{2n} (x) \, dx = (-1)^n \sqrt{\pi} \cdot \frac{(2n)!}{n!} \, t^{2n}
\]

or writing \(s = \frac{1}{1-t^2} \), this becomes

\[
\int_{-\infty}^{+\infty} e^{-x^2} H_{2n} (x) \, dx = \sqrt{\pi} \cdot \frac{(2n)!}{n!} \frac{(1-s)^n}{s^{\frac{n}{2} + \frac{1}{2}}}.
\]

(18)

Similarly, we get

\[
\int_{-\infty}^{+\infty} e^{-x^2} H_{2n+1} (x) \, x \, dx = -\sqrt{\pi} \cdot \frac{(2n+1)!}{n!} \frac{(1-s)^n}{s^{\frac{n}{2} + \frac{3}{2}}}.
\]

(19)

These formulæ were obtained by Doetsch in a different way.

§ 7. We can write (4) in the form

\[
\int_{0}^{\infty} e^{-t} \frac{\alpha}{t} I_{\alpha} (t) \, t^\alpha J_{\alpha} (2 \sqrt{xt}) \, dt = \frac{e^{-x} x^{\alpha + \alpha}}{n!}.
\]

Differentiating \(n \) times w.r.t. \(x \), and using the relation

\[
\left(\frac{d}{dz} \right)^m (z^\rho J_\rho (z)) = z^{\rho-m} J_{\rho-m} (z)
\]

we get

\[
\int_{0}^{\infty} e^{-t} \frac{\alpha}{t} \frac{n + \alpha}{2} I_{n+\alpha} (t) \, t^{\frac{n}{2}} J_{\alpha} (2 \sqrt{xt}) \, dt = e^{-x} x^{\alpha + \alpha} I_{n+\alpha} (x)
\]

(20)

Changing \(\alpha \) into \(2\alpha + n \), this takes the form

\[
\int_{0}^{\infty} e^{-t} \frac{n + \alpha}{2} I_{n} (t) \, t^{\frac{n}{2} + \alpha} J_{\alpha} (2 \sqrt{xt}) \, dt = e^{-x} x^{\alpha + \alpha} I_{n} (x) \quad (\alpha > -\frac{1}{2})
\]

(21)

which is similar to Watson's integral equation for \((I_{\alpha} (x))^2 \).
We may write (20) also in the form
\[
2 \int_{a}^{\infty} e^{-\lambda^2 (\nu + a + 1) t} I_{n+1} (2a) J_{n-a} (2xt) \, dt = e^{-x^2} x^{n+a} L_n (x^2). \tag{22}
\]
By taking \(a = -\frac{1}{2} \) and \(+\frac{1}{2} \) in (22) we get the relations
\[
\begin{align*}
\int_{-\infty}^{+\infty} e^{-\lambda^2 (\nu + \frac{1}{2}) t} H_{2n} (t) J_{-n+\frac{1}{2}} (2xt) \, dt &= e^{-x^2} x^{n-\frac{1}{2}} H_{2n} (x) \\
+\infty \int_{-\infty}^{+\infty} e^{-\lambda^2 (\nu + \frac{1}{2}) t} H_{2n+1} (t) J_{-n+\frac{1}{2}} (2xt) \, dt &= e^{-x^2} x^{n-\frac{1}{2}} H_{2n+1} (x)
\end{align*}
\tag{23}
\]