NOTE ON A TYPE OF GENERALISED LAGUERRE POLYNOMIAL

BY B. S. SASTRY

(Department of Mathematics, Central College, Bangalore)

Received August 20, 1939

(Communicated by Prof. B. S. Madhava Rao)

§ 1. Introduction

Let the Polynomial $\pi_n(x)$ be defined by

$$\pi_n(x) = e^x \frac{d^n}{dx^n} \left[e^{-x} \cdot A_n(x) \right],$$

where

$$A_n(x) = (a_0, a_1, a_2, \ldots, a_n, x, 1)^n.$$

The Laguerre Polynomial

$$L_n(x) = e^x \frac{d^n}{dx^n} \left[e^{-x} \cdot x^n \right]$$

is a particular case of $\pi_n(x)$ when $A_n(x) = x^n$. This polynomial $\pi_n(x)$ has been suggested by A. Angelescu.¹ I have obtained the following results pertaining to this generalised Polynomial. [Its properties could also be derived by making use of the known properties of the associated Laguerre Polynomials $L_n(x)$, but the direct methods I have adopted here appear to be simpler and lead, in particular, to a characteristic property [vide (a) below of $\pi_n(x)$].

(a) $A_n(x)$ can be expressed in terms of $\pi_0(x), \pi_1(x), \pi_2(x), \ldots, \pi_n(x)$ and is the same series as $\pi_0(x), \pi_1(x), \pi_2(x), \ldots, \pi_n(x)$ that $\pi_n(x)$ is of $A_0(x), A_1(x), A_2(x), \ldots, A_n(x)$; and the series form for $\pi_n(x)$ is the same as for the Laguerre Polynomial with $A_n(x)$ written for $x^n, A_{n-1}(x)$ for x^{n-1}, etc.

(b) The function $\psi(x, t) = \frac{1}{1+t} \cdot e^{\frac{-xt}{1-t}} \cdot \phi \left(\frac{-t}{1-t} \right)$ generates the series

$$\sum_{n=0}^{\infty} \frac{\pi_n(x)}{1 \cdot n} \cdot t^n,$$

where

$$\phi(z) = a_0 + a_1 z + \frac{a_2}{2} z^2 + \cdots + \frac{a_r}{r} z^r + \cdots,$$

and $a_0, a_1, a_2, a_3, \ldots, a_n$ are such that this series has a positive radius of convergence.

(c) $\pi_n'(x) = n [\pi'_{n-1} (x) - \pi_{n-1}(x)]$.

¹ C. R. Acad. Sci. Roum., 1938, 2, 199-201; vide also Zbl. f. Math., 1938, 18, 181, 356. The original article has not been accessible to me.
§ 2. Series form for \(\tau_n(x) \)

\[
\tau_n(x) = \sum_{r=0}^{n} (-1)^r \binom{n}{r} n(n-1)(n-2) \cdots (n-r+1) A_r(x)
\]

\[
= \sum_{r=0}^{n} (-1)^{n-r} \binom{n}{r} n(n-1)(n-2) \cdots (n-r+1) A_{n-r}(x)
\]

\[
= (-1)^n \left[A_n(x) - \frac{n^2}{1} A_{n-1}(x) + \frac{n^2(n-1)^2}{2} A_{n-2}(x) - \cdots \\
+ (-1)^r \frac{n^2(n-1)^2 \cdots (n-r+1)^2}{r!} A_{n-r}(x) + \cdots \\
+ (-1)^n \left[\sum_{r=0}^{n} A_r(x) \right] \right].
\]

From this the expressions for \(\tau_r(x) \), \(r = 0, 1, 2, \cdots n \), in powers of \(x \) are found to be

\[
\tau_0(x) = A_0 = a_0
\]

\[
\tau_1(x) = -(A_1 - A_0) = -[a_0 x + (a_1 - a_0)]
\]

\[
\tau_2(x) = (A_2 - 4A_1 + 2A_0) = [a_0 x^2 + 2(a_1 - 2a_0) x \\
+ (a_2 - 4a_1 + 2a_0)]
\]

\[
\tau_3(x) = -(A_3 - 9A_2 + 18A_1 - 6A_0) = -[a_0 x^3 + 3(a_1 - 3a_0) x^2 \\
+ 3(a_2 - 6a_1 + 6a_0) x + (a_3 - 9a_2 + 18a_1 - 6a_0)]
\]

\[
\vdots
\]

\[
\tau_n(x) = (-1)^n \sum_{r=0}^{n} \left[\binom{n}{r} A_{n-r} - \frac{n^2}{1} \binom{n-1}{r} A_{n-r-1} \\
+ \frac{n^2(n-1)^2}{2} \binom{n-2}{r} A_{n-r-2} + \cdots \\
+ (-1)^r \frac{n^2(n-1)^2 \cdots (r+1)^2}{n-r} A_0 \right] x^r.
\]

The first four of these equations are easily verified to hold when the \(\tau \)'s and the \(A \)'s are interchanged. In fact this observation is true of equation (i) itself as will be shown below by a mere comparison of coefficients. That is, if (i) be written as

\[
\tau_n(x) = (p_0, p_1, p_2, \cdots, p_n) \sum_{r=0}^{n} \tau_r(x)
\]

then will

\[
A_n(x) = (p_0, p_1, p_2, \cdots, p_n) \sum_{r=0}^{n} \tau_r(x)
\]

where \(p_0, p_1, p_2, \cdots, p_n \) are the coefficients of \(\pi_n(x), \pi_{n-1}(x) \), etc., in (1).
§ 3. The Generating Function of the Series \(\sum_{n=0}^{\infty} \frac{\pi_n(x)}{n!} \cdot t^n \)

\[
\sum_{n=0}^{\infty} \frac{\pi_n(x)}{n!} \cdot t^n = \sum_{n=0}^{\infty} \sum_{r=0}^{n} (-1)^r \binom{n}{r} \frac{A_r(x)}{r!} \cdot \frac{t^r}{(1-t)^{r+1}}
\]

\[
= \frac{1}{1-t} \sum_{r=0}^{\infty} \left(\frac{\frac{1}{r} \minus \frac{t}{1-t}}{1} \right)^r A_r(x)
\]

\[
= \frac{1}{1-t} \cdot e^{-\frac{xt}{1-t}} \cdot \phi \left(\frac{-t}{1-t} \right)
\]

Thus \(\phi (x, t) = \frac{1}{1-t} \cdot e^{-\frac{xt}{1-t}} \cdot \phi \left(\frac{-t}{1-t} \right) \) where \(\phi (z) = a_0 + a_1 z + \frac{a_2}{2!} z^2 + \cdots + \frac{a_r}{r!} z^r + \cdots \) and the constants \(a_0, a_1, a_2, \ldots, a_n \) [of \(A_n(x) \)] are such that the series \(\phi (z) \) has a positive radius of convergence. The coefficient of \(t^n \) in \(\phi \left(\frac{-t}{1-t} \right) = \sum_{n=1}^{\infty} (-1)^r \frac{A_r(x)}{r!} \left(\frac{n-1}{n-1} \right) \). [If \(a_0 = 1, \) and \(a_1 = a_2 = a_3 = \cdots = 0, \) then \(\phi (x, t) \) is seen to reduce to the corresponding function of the Laguerre Polynomial, viz., \(\frac{1}{1-t} \cdot e^{\frac{xt}{1-t}} \)].

§ 4. To Express \(A_n(x) \) in Terms of \(\pi_0(x), \pi_1(x), \ldots, \pi_n(x) \)

Multiply both sides of the equation

\[
\sum_{n=0}^{\infty} \frac{\pi_n(x)}{n!} \cdot t^n = \frac{1}{1-t} \cdot e^{\frac{xt}{1-t}} \cdot \phi \left(\frac{-t}{1-t} \right)
\]

by \(-t \). So,

\[
\sum_{n=0}^{\infty} - \frac{\pi_n(x)}{n!} \cdot t^{n+1} = \left(\frac{-t}{1-t} \right) \cdot e^{\frac{xt}{1-t}} \cdot \phi \left(\frac{-t}{1-t} \right).
\]

Put \(\left(\frac{-t}{1-t} \right) = z \), and \(\cdots (t^{n+1}) = (-1)^n \left(\frac{z}{1-z} \right)^{n+1} \).

Then

\[
\sum_{n=0}^{\infty} (-1)^n \frac{\pi_n(x)}{n!} \cdot \left(\frac{z}{1-z} \right)^{n+1} = z \cdot e^{zt} \cdot \phi (z).
\]
Note on a Type of Generalised Laguerre Polynomial

Develop the two sides in integral powers of z and compare the coefficients of z^n:

The coefficient of z^n in $\sum_{n=0}^{\infty} (-1)^n \frac{\pi_r(x)}{\binom{r}{n}} \left(\frac{z}{1-z} \right)^{r+1}$, and the coefficient of z^n in $(-1)^r \frac{\pi_r(x)}{\binom{r}{n}} \left(\frac{z}{1-z} \right)^{r+1}$, and the coefficient of z^n in $(-1)^r \frac{\pi_r(x)}{\binom{r}{n}} \left(\frac{z}{1-z} \right)^{r+1}$. The coefficient of z^n in $\sum_{n=0}^{\infty} (-1)^n \frac{\pi_r(x)}{\binom{r}{n}} \left(\frac{z}{1-z} \right)^{r+1}$. The coefficient of z^n in $\sum_{n=0}^{\infty} (-1)^n \frac{\pi_r(x)}{\binom{r}{n}} \left(\frac{z}{1-z} \right)^{r+1}$.

Again the coefficient of z^n in $\sum_{n=0}^{\infty} (-1)^n \frac{\pi_r(x)}{\binom{r}{n}} \left(\frac{z}{1-z} \right)^{r+1}$.

\[A_n(x) = \sum_{r=0}^{n} (-1)^r \frac{n-1}{n} \cdot \pi_n(x). \]

Changing $(n-1)$ into n we have

\[A_n(x) = (-1)^n \left[\pi_n(x) - \frac{n^2}{2} \pi_{n-1}(x) + \frac{n^2 (n-1)^2}{12} \pi_{n-2}(x) + \cdots + \right. \]

\[+ \left. (-1)^r \frac{n^2 (n-1)^2 \cdots (n-r+1)^2}{r!} \pi_{n-r}(x) + \cdots \right] \]

\[= \sum_{r=0}^{n} (-1)^r \frac{n}{r} n(n-1) \cdots (r+1) \pi_r(x), \]
§ 5. The Recurrence Relation $\pi_n' (x) = n [\pi_{n-1} (x) - \pi_{n-3} (x)]$

Differentiating with respect to x the equation

$$\psi (x, t) = \frac{1}{1 - t} e^{-xt} \phi \left(\frac{t}{1 - t} \right)$$

we have

$$(1 - t) \frac{\partial \psi (x, t)}{\partial x} = - t \psi (x, t);$$

and since $\psi (x, t) = \sum_{\mu = 0}^{n} \frac{\pi_n (x)}{\mu!} t^\mu$, we have, by comparing the coefficients of t^μ on either side, the relation

$$\pi_{n-1} (x) - \pi_{n-3} (x) = n [\pi_{n-1} (x) - \pi_{n-3} (x)]$$

(2)

which is also true for the Laguerre Polynomial. [If $\pi_n (x)$ were, on the other hand, defined by

$$e^{-x} \frac{d^n}{dx^n} [e^x A_n (x)],$$

then $\sum_{\mu = 0}^{n} \pi_n (x) \cdot t^\mu = \frac{1}{1 - t} e^{xt} \phi \left(\frac{t}{1 - t} \right)$

and the relation corresponding to (ii) is $\pi_{n-1} (x) = \pi_n' (x) - \pi_{n-1} (x)$, giving $\pi_n' (x) = \pi_{n-1} (x) + \pi_{n-2} (x) + \cdots + \pi_0 (x).$]

My sincere thanks are due to Prof. B. S. Madhava Rao who suggested the problem and guided me through the work.