A DEFINITE INTEGRAL

By S. CHOWLA
(Government College, Lahore)

Received March 6, 1939

THEOREM: If \(n \) and \(r \) are non-negative integers, where \(r < n \), then

\[
(r + 1) K (r) = (-1)^{n-1} (n - r) K (n - r - 1)
\]

where

\[
K (r) = \int_0^1 \frac{1}{u} (\log u)^r \left\{ \log \left(\frac{1 + u}{1 - u} \right) \right\}^{n-r} \, du
\]

Proof: Integration by parts, gives

\[
K (r) = - \int_0^1 \frac{1}{u} \left(\log \left(\frac{1 + u}{1 - u} \right) \right)^{n-r} \left(\frac{r (\log u)^{r-1}}{u} \right) \, du
\]

\[
- \int_0^1 (\log u) (\log u)^r \left(\log \left(\frac{1 + u}{1 - u} \right) \right)^{n-r-1} (n - r) \left(\frac{1 - u}{1 + u} \right) \left(\frac{2}{(1 - u)^2} \right) \, du
\]

\[
= - r K (r) - 2 (n - r) \int_1^0 \left(\log \left(\frac{1 - x}{1 + x} \right) \right)^{r+1} \left(\log \left(\frac{1}{x} \right) \right)^{n-r-1} \left(\frac{1 + x}{4x} \right) \left(\frac{2}{(1 + x)^2} \right) \, dx
\]

by means of the substitution \(u = \frac{1 - x}{1 + x} \).

Hence

\[
K (r) = - r K (r) - (-1)^{n} (n - r) K (n - r - 1)
\]

Corollary. If \(n \) is an even positive integer, then

\[
\int_0^1 \frac{1}{u} \left\{ \left(\log u + \log \left(\frac{1 + u}{1 - u} \right) \right)^n - (\log u)^n \right\} \, du = 0.
\]

(See American Mathematical Monthly, November 1938.)

Correction to a previous paper. My paper "A remark on \(g(n) \)" in these Proceedings for January 1939 contains some trivial blunders, but the whole argument is rendered correct by replacing "\(\epsilon = \frac{1}{100} \)" by "\(\epsilon = \frac{1}{200} \)."

When this change is made the argument reads correctly.