ON THE INVERSES OF A CIRCLE WITH RESPECT TO A TETRAD OF FIXED CIRCLES AND THEIR ORTHOGONAL TETRAD*

BY B. R. VENKATARAMAN

Research Scholar, Annamalai University

Received December 13, 1938

(Communicated by Professor A. Narasinga Rao)

1. Let \(C_i \) \((i = 1, 2, 3, 4)\) be four circles and \(S_i \) the four circles respectively orthogonal to sets of three chosen from \(C_i \). The main object of this paper is then to establish the following results.

If the inverses of a point \(P \) w.r.t. the circles \(C_i \) lie on a circle, then the inverses of \(P \) w.r.t. \(S_i \) also lie on a circle. The locus of such points \(P \) is an octavic curve \(T_1 \) having quadruple points at the circular points at infinity.

\[
(1.1)
\]

The totality of circles \(\Sigma \) whose inverses w.r.t. \(C_i \) have a common orthogonal circle as also the inverses w.r.t. \(S_i \) consists of the four coaxal systems respectively conjugate to the four systems defined by the pairs \(C_i, S_i ; \ (i = 1, 2, 3, 4) \) and a family of circles whose centres lie on a quartic curve.

\[
(1.2)
\]

If the inverses of a circle \(\Sigma \), w.r.t. the circle \(C_i \) have a common orthogonal circle \(\Sigma' \), the transformation in circle-space carrying \(\Sigma \) to \(\Sigma' \) is the involutoric cubic transformation whose singular points are those representing the circles \(S_i \) and whose fixed points represent the circles cutting the circles \(C_i \) at equal angles.

\[
(1.3)
\]

Lastly the following theorem relating to the Miquel-Clifford configuration is proved.

If the inverses of a point \(P \) w.r.t. \(n \) concurrent circles \(C_i \) lie on a circle then the inverses of \(P \) w.r.t. every concurrent set of \(n \) circles of the Miquel-Clifford configuration generated by the circles \(C_i \) also lie on a circle.

\[
(1.4)
\]

2. It is well known that the \(\infty^2 \) circles of a plane \(\pi \) may be represented by the points of a projective space \(S_3 \), the \(\infty^2 \) point circles corresponding to points on a quadric \(\Omega \) called the Absolute. Let us represent, for convenience, by the same symbol both the circle on \(\pi \) and its corresponding point in \(S_3 \). Let \(\Delta_1, \Delta_2 \) be the two tetrahedra whose vertices represent \(C_i \) and \(S_i \) so

* My thanks are due to Professor A. Narasinga Rao for guidance and criticism in the preparation of this paper.
that Δ_1, Δ_2 are reciprocals of each other in regard to Ω. If the inverses of a point P on π w.r.t. the circles C_i are concyclic, it is easy to see that in S_3 the projections of C_i on Ω from P as vertex of projection are coplanar. In this case, the generators g_1, g_2 of Ω at P and the lines joining P to the vertices C_i of Δ_1 all lie on a quadric cone of vertex P and hence g_1 and g_2 both belong to the same tetrahedral complex Γ whose fundamental tetrahedron is Δ_1. Hence g_1, g_2 and the four lines of intersection of the faces of Δ_1 with the tangent plane p to Ω at P all touch a conic, viz., the complex conic of Γ in the plane p. Reciprocating this result in regard to Ω we immediately see that g_1, g_2 and the lines joining P to the vertices S_i of Δ_2 all lie on a quadric cone of vertex P. Hence the projections of S_i from p on Ω are coplanar. Hence on π the inverses of P w.r.t. the circles S_i lie on a circle. Thus the first part of (1.1) is proved. As a particular case of (1.1), we have the theorem that if the centres of four circles C_i lie on a circle then the centres of the four circles S_i respectively orthogonal to sets of three chosen from C_i also lie on a circle.

3. Next, taking Δ_1 as the tetrahedron of reference let the homogeneous co-ordinates of points in S_3 be so chosen that the equation of the Absolute takes the form

$$\Omega = a_{11} x_1^2 + \cdots + a_{44} x_4^2 + 2a_{12} x_1 x_2 + \cdots = 0.$$

If two circles Σ, Σ' are inverses of one another in regard to a circle C it is known that in S_3, Σ, Σ' are collinear with C and separate harmonically C and the point of intersection of the line with the polar plane of C in regard to Ω. The use of this property shows that if X be a circle of co-ordinates x_i and X_j the four circles which are respectively the inverses of X w.r.t. C_i, then the co-ordinates of X_j are obtained from those of X by simply changing x_i into $x_i - \frac{1}{a_{ii}} \frac{\delta \Omega}{\delta x_i}$ and leaving the three other co-ordinates unaltered. The condition of coplanarity of the points X_j is then easily seen to be

$$\psi_j = \frac{a_{11} x_1}{p_1} + \cdots + \frac{a_{44} x_4}{p_4} - 2 = 0 \quad (3.1)$$

where

$$p_i = \frac{1}{2} \frac{\delta \Omega}{\delta x_i} \quad (i = 1, 2, 3, 4).$$

Hence the ∞^2 circles C on π which are such that the inverses of C w.r.t. C_i have a common orthogonal circle are represented in S_3 by the points of the quartic surface ψ_1. The surfaces ψ_1 and Ω intersect in an octavic curve Γ_1. From the definitions of ψ_1 and Ω it is evident that the points of Γ_1 represent points P on π which are such that the inverses of P w.r.t. the circles C_i lie
on a circle. The latter part of (1·1) follows immediately by projecting on
π from a point of Ω.

4. Let ψ₂ = 0 be the quartic surface related to Δ₂ and Ω in the same
way as ψ₁ = 0 is related to Δ₁ and Ω. In virtue of (1·1), ψ₁ and ψ₂ both
intersect Ω in the same octavic curve Γ₁. They will therefore intersect
in a further curve Γ₂ of degree eight. Now, from (3·1), it is readily seen
that the four lines \(x_i = 0, \frac{\delta \Omega}{\delta x_i} = 0 \); i.e., the four lines of intersection of the
corresponding faces of Δ₁, Δ₂ are lines lying on the surface ψ₁. From
symmetry it follows that these four lines lie also on ψ₂. Thus Γ₂ breaks up
into these four lines and a quartic curve. From this (1·2) follows immedi-
ately by projecting from a point of Ω on π. The curves Γ₁, Γ₂ on π intersect
in 64 points. Of these, sixteen are the projections of the intersections of
Γ₂ with Ω. Omitting these, we have the result.

There are 48 circles Σ having the properties:

(a) the inverses of Σ w.r.t. Cᵢ have a common orthogonal circle as also
the inverses of Σ w.r.t. the circles Sᵢ.

(b) the inverses of the centre of Σ w.r.t. Cᵢ lie on a circle as also the
inverses w.r.t. the circles Sᵢ.

5. Let X be a circle of co-ordinates \(x_i, X_i \) the inverses of X w.r.t.
the circles Cᵢ. Then the co-ordinates of \(X_i \) are obtained as mentioned in (3).
If the circles Xᵢ have a common orthogonal circle Y of co-ordinates \(y_i, Y_i \), the
points Xᵢ lie on the polar plane of Y in regard to Ω. The analytical
expression of this condition gives immediately

\[
\frac{1}{a_{11}} \frac{\delta \Omega}{\delta x_1} \frac{\delta \Omega}{\delta y_1} = \frac{1}{a_{22}} \frac{\delta \Omega}{\delta x_2} \frac{\delta \Omega}{\delta y_2} = \cdots = \frac{1}{a_{44}} \frac{\delta \Omega}{\delta x_4} \frac{\delta \Omega}{\delta y_4}.
\]

Now, let D = \(|a_{ij}| \) be the discriminant determinant of the equation
\(\Omega = 0 \) and let \(a_{ij} \) be the co-factor of \(a_{ij} \) in D. Then \(\frac{\delta \Omega}{\delta x_i} \frac{\delta \Omega}{\delta y_i} \) may be consid-
ered as the system of homogeneous co-ordinates of X, Y referred to Δ₂, for
which the equation of the quadric Ω takes the form

\[a_{11}x_1^2 + \cdots + 2a_{12}x_1x_2 + \cdots = 0. \]

Hence, referred to Δ₂, if the tangential equation to the Absolute Ω be
\(a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + a_{44}w^2 + 2a_{12}lm + \cdots = 0 \) the point co-
ordinates \(x_i, y_i \) (referred to Δ₂) of the circles X, Y are connected by the equations.

\[x_iy_i = a_{ii} \quad (i = 1, 2, 3, 4). \]

These equations evidently define the involutoric cubic transformation whose
singular points are the vertices of Δ₂ and whose fixed points are the eight
points

\((\sqrt{a_{11}}, \pm \sqrt{a_{22}}, \pm \sqrt{a_{33}}, \pm \sqrt{a_{44}}) \)
Inverses of a Circle with Respect to a Tetrad of Fixed Circles

forming the vertices of two tetrahedra which, with Δ_2, form a desmic system. These eight points are known to represent the eight circles which cut the circles C_i at equal angles. Thus (1.3) is proved.

When the circles X_i do not have a common orthogonal circle, the tetrahedron whose vertices are X_i is evidently in perspective with Δ_1, the centre of perspective being X. In this case it may be verified that the transformation mentioned above, carries X into the pole, in regard to Ω, of the plane of perspective of the two tetrahedra. Interpreted in terms of circle geometry, this means that if C_i' are the inverses w.r.t. C_i of any circle Σ and S_i' the circles orthogonal to sets of three chosen from C_i', the transformation carries Σ into the circle Σ' where Σ' is the common member of the four coaxal systems $S_i S_j$; $(i = 1, 2, 3, 4)$.

6. We next proceed to establish the result (1.4) connected with the Miquel-Clifford configuration. It is well known that the locus of points P which are such that the feet of the perpendiculars from P on four lines l_i no three of which are concurrent and no two are parallel $(i = 1, 2, 3, 4)$ lie on a circle is the circular cubic Γ_3 passing through the eight points of the Miquel-Clifford configuration generated by the four lines. Hence if P be a point on Γ_3, the reflections of P about the four lines l_i lie on a circle. By inverting this result we see, since the inverse of a circular cubic is a bicircular quartic or a circular cubic according as the centre of inversion does not or does lie on the curve, that the locus of points P which are such that the inverses of P w.r.t. four concurrent circles C_i lie on a circle is a bicircular quartic or a circular cubic according as the centres of C_i do not or do lie on a circle. In either case the locus passes through the eight points of the Miquel-Clifford configuration generated by the four circles C_i.

7. Let C be the Miquel-Clifford configuration generated by four circles C_i concurrent at a point which we denote by the symbol (); let (ij) denote the intersection, other than $()$, of the circles C_i, C_j and let (ijk) denote the circle through $(ij), (jk), (ki)$. Let Γ_{ij} be the locus, which has been seen to be a cyclic, of points whose inverses with respect to the four circles of C passing through (ij) are concyclic. Γ_{ij} is known to pass through the eight points of C and it is readily seen that the limiting points of the coaxal system defined by C_i and C_j are points on Γ_{ij} as also on $\Gamma_{()}$. Thus the cyclics $\Gamma_{ii}, \Gamma_{()}$ have in common 10 points besides the two nodes at the circular points at infinity. Hence Γ_{ij} and $\Gamma_{()}$ coincide with one another. We, therefore, arrive at the result "If the inverses of a point P w.r.t. four

concurrent circles C_i lie on a circle, then the inverses of P w.r.t. any concurrent tetrad of circles of the Miquel-Clifford configuration generated by the four circles lie on a circle.”. Taking now a fifth circle through the point of concurrency of the four circles C_i, if the inverses of a point P w.r.t. the five circles lie on a circle, it is readily seen by repeated application of the previous result that the inverses of P w.r.t. every concurrent set of five circles of the configuration generated by the five circles are concyclic and generally we shall have the theorem (1.4). In particular, when P is the point at infinity we have the interesting theorem:

If the centres of n concurrent circles C_i lie on a circle then the centres of any other set of n concurrent circles of the Miquel-Clifford configuration generated by the circles C_i also lie on a circle. \((7.1) \)

In fact if the inverses of a point P w.r.t. a set of n concurrent circles and therefore, by theorem (1.4), w.r.t. every set of n concurrent circles of the Miquel-Clifford configuration generated by the n circles lie on a circle, we may associate with each circle of the configuration, a point—namely the inverse of P w.r.t. that circle, and with each point of the configuration a circle—namely the circle which passes through the n points associated with the n circles passing through the point. It is readily seen that the 2^{n-1} points and the 2^{n-1} circles thus derived define another Miquel-Clifford configuration.