THE EXPANSION OF A FUNCTION IN A SERIES OF ASSOCIATED LEGENDRE FUNCTIONS.

BY N. G. SHABDE.

(From the College of Science, Nagpur.)

Received May 1, 1938.
(Communicated by Prof. B. S. Madhava Rao.)

1. D. P. Banerji has recently given a theorem for the expansion of an arbitrary function in a series of conal or toroidal functions. The object of this note is to give an extension of this theorem to the expansion of an arbitrary function in a series of $P_{-\frac{1}{2}+\mu}^m (\cosh \psi) = K_{\mu}^m (\cosh \psi)$ or of $P_{n-1}^m (\cos \theta)$.

2. The function $K_{\mu}^m (\cosh \psi)$ is given by

$$K_{\mu}^m (\cosh \psi) = \frac{2^{m+1} \sinh^m \psi}{\Pi (-\frac{1}{2}) \Pi (-m - \frac{1}{2})} \int_0^\psi \frac{\cos \mu \, du}{\{2 (\cosh \psi - \cosh u)^{m+1}\}}$$

where $R (\frac{1}{2} - m) > 0$ and the phase of $2 \cosh \psi - 2 \cosh u$ is zero. (1)

Suppose now that the function $F(x)$ is expressible in the form

$$F(x) = \int x (\xi) \frac{d\xi}{(x - \xi)^{m+1}}$$

where $0 < m + \frac{1}{2} < 1$. (2)

This is Abel's integral equation and its solution is

$$u(x) = \frac{\cos m\pi}{\pi} \frac{d}{dx} \int_x^\psi \frac{F(\xi) \, d\xi}{(x - \xi)^{1-m}}.$$ (3)

Assuming $F(x)$ to satisfy (2) and (3) we have

$$F(\cosh \psi) = \int_0^\psi \frac{u(\xi) \, d\xi}{(\cosh \psi - \xi)^{m+1}}$$

$$= \int_0^\psi \frac{u(\cosh \phi) \sinh \phi \, d\phi}{(\cosh \psi - \cosh \phi)^{m+1}}.$$ (4)

Expand $u(\cosh \phi) \sinh \phi$ as a Fourier series,

$$u(\cosh \phi) \sinh \phi = \sum_{\rho = 0}^{\infty} a_{\rho} \cos \rho \phi \quad (0 < \phi < \pi)$$

and we have the expansion

$$F(\cosh \phi) = \sum_{p=0}^{\infty} a_p \frac{\Pi(-\frac{1}{2}) \Pi(-m-\frac{1}{2})}{\sqrt{2} (\sinh \phi)^m} K_p^m(\cosh \phi)$$

where $-\frac{1}{2} < m < \frac{1}{2}$,

$$A_p = \frac{\sqrt{2}}{\pi} \frac{\Pi(-\frac{1}{2}) \Pi(-m-\frac{1}{2})}{(\sinh \phi)^m} \int_0^{\pi} u(\cosh \phi) \sinh \phi \cos \rho \phi \ d\phi$$

$$A_0 = \frac{1}{\sqrt{2} \pi} \frac{\Pi(-\frac{1}{2}) \Pi(-m-\frac{1}{2})}{(\sinh \phi)^m} \int_0^{\pi} u(\cosh \phi) \sinh \phi \ d\phi.$$

3. Again, we have

$$P_{m+\frac{1}{2}}(\cos \theta) = \frac{2^{m+1}}{\Pi(-\frac{1}{2}) \Pi(m-\frac{1}{2})} (\sin \theta)^{-m} \int_0^{\theta} \frac{\cos n \phi \ d\phi}{2 (\cos \phi - \cos \theta)^{m+\frac{1}{2}}}$$

where $R(\frac{1}{2} - m) > 0$.

Proceeding as in the previous article, we get

$$F(\cos \theta) = \sum_{n=0}^{\infty} b_n P_{m+\frac{1}{2}}(\cos \theta) \quad (0 < \theta < \pi)$$

where $|m| < \frac{1}{2}$,

$$b_n = \frac{\sqrt{2}}{\pi} \frac{\Pi(-\frac{1}{2}) \Pi(m-\frac{1}{2})}{(\sin \theta)^{-m}} \int_0^{\pi} u(\cos \phi) \sin \phi \cos n \phi \ d\phi \quad (n \geq 1)$$

and

$$b_0 = \frac{1}{\sqrt{2\pi}} \frac{\Pi(-\frac{1}{2}) \Pi(m-\frac{1}{2})}{(\sin \theta)^{-m}} \int_0^{\pi} u(\cos \phi) \sin \phi \ d\phi.$$

Banerji's theorems can be obtained by putting $m = 0$ in (5) and (7) above.

4 Hobson, loc. cit., p. 267, formula (128).
5 Loc. cit., formula (5) and (7).