ON CONICS CONNECTED WITH FOUR OR MORE LINES.

BY F. C. AULUCK.

(From the Department of Physics, Government College, Lahore.)

Received December 13, 1937.

(Communicated by Dr. S. Chowla.)

After V. Ramaswami Aiyer I define \(\Gamma_p \) as the conic passing through a point \(P \) and the feet of the perpendiculars from it on four given lines. In this paper I prove the following theorems:

Theorem I. Given five lines \(L_r \) (1 \(\leq r \leq 5 \)) in a plane, the locus of a point \(P \) which moves so that \(\Gamma_p \), associated with the lines \(L_r \) (2 \(\leq r \leq 5 \)), has one of its axes parallel to \(L_1 \) is a curve of the 5th degree consisting of the four lines \(L_r \) (2 \(\leq r \leq 5 \)) and another line \(L_1' \).

Proof.

Taking any point \(O \) on \(L_1 \) as the origin and the lines through \(O \) inclined at an angle \(\frac{\pi}{4} \) with \(L_1 \) as the co-ordinate axes, we see that the axes of \(\Gamma_p \) must be parallel to the lines \(x^2 - y^2 = 0 \).

Let the equations of the four lines \(L_r \) (2 \(\leq r \leq 5 \)) be

\[
L_r = p_r - x \cos \alpha_r - y \sin \alpha_r = 0.
\]

If the point \(P \) is \((x, y)\), then the co-ordinates of the feet of the perpendiculars from \(P \) on the lines \(L_r \) are of the form \((X_r, Y_r)\), where

\[
X_r = x + L_r \cos \alpha_r, \quad Y_r = y + L_r \sin \alpha_r.
\]

The equation of a conic having its axes parallel to \(x^2 - y^2 = 0 \) is

\[
x^2 + 2hxy + y^2 + 2gx + 2fy + c = 0.
\]

The point \(P \) and the four feet lie on this conic if

\[
\begin{vmatrix}
x^2 + y^2 & xy & x & y & 1 \\
X_2^2 + Y_2^2 & \cdot & \cdot & Y_2 & 1 \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
X_5^2 + Y_5^2 & \cdot & \cdot & Y_6 & 1
\end{vmatrix} = 0
\]

which immediately reduces to

\[
\begin{vmatrix}
L_2L_3L_4L_5 & L_2 & L_2 \sin \alpha_2 \cos \alpha_2 & \cos \alpha_2 & \sin \alpha_2 \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
L_5 & L_5 \sin \alpha_5 \cos \alpha_5 & \cos \alpha_5 & \sin \alpha_5
\end{vmatrix} = 0
\]
or, by adding x times the 3rd column and y times the 4th to the first column.

\[
\begin{vmatrix}
L_2 L_3 L_4 L_5 & \rho_2 & L_2 \sin a_2 \cos a_2 & \cos a_2 & \sin a_2 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\rho_5 & L_5 \sin a_5 \cos a_5 & \cos a_5 & \sin a_5 \\
\end{vmatrix} = 0
\]

a fifth degree equation consisting of the four lines themselves and a line L_1' (say).

2. **Theorem II.** The locus of a point P which moves so that Γ_p, associated with four given lines L_r ($2 < r < 5$), has the property that the product of the tangents of the angles made by its asymptotes with a given line L_{r_1} is constant, is a curve of the 6th degree consisting of the four lines L_r ($2 < r < 5$) and a circle C_1.

Proof.

Taking L_{r_1} as the x-axis and the equations of the other lines as before we see that Γ_p is of the form

$$\lambda x^2 + 2hxy + y^2 + 2gx + 2fy + c = 0,$$

where λ is a constant.

Proceeding as before we see that P lies on the curve

\[
\begin{vmatrix}
L_2 L_3 L_4 L_5 & L_2 (\lambda \cos^2 a_2 + \sin^2 a_2) & L_2 \cos a_2 \sin a_2 & \cos a_2 & \sin a_2 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
L_5 (\lambda \cos^2 a_5 + \sin^2 a_5) & L_5 \cos a_5 \sin a_5 & \cos a_5 & \sin a_5 \\
\end{vmatrix} = 0
\]

It is easily seen that coefficients of x^2 and y^2 in the determinant are equal and coefficient of xy is zero.

If $\lambda = -1$, we get V. Ramaswami Aiyer's theorem that if Γ_p is a rectangular hyperbola, the locus of P is the centre-circle of the four lines. Our result shows that the locus consists of the four lines themselves also.

From the above two theorems we easily obtain

Theorem III. Given a set of five lines, we can associate with them another set of five lines and an infinity of sets of five circles.

I do not know if there is any relation between the two sets of five lines and in particular if the relation is a reciprocal one.

4. N. Durairajan has shown\(^1\) that the locus of point which is such that the feet of the perpendiculars from it on the six lines lie on a conic is a curve of the 8th degree. I show that the curve is of the 7th degree.

\(^1\) The Mathematics Student, 5. No. 1, pp. 29-30.
As before, we see that P lies on

\[
\begin{vmatrix}
L_{t_1}^2 \cos^2 a_1 & L_{t_1}^2 \cos a_1 \sin a_1 & L_{t_1}^2 \sin^2 a_1 & L_{t_1} \cos a_1 & L_{t_1} \sin a_1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
L_{s_6}^2 \cos^2 a_6 & \quad & \quad & \quad & I_{s_6} \sin a_6 & 1
\end{vmatrix}
= 0
\]

a curve of the 8th degree but the terms of the 8th degree are

\[
\begin{vmatrix}
P_1^2 & P_1 Q_1 & Q_1^2 & P_1 & Q_1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
P_6^2 & P_6 Q_6 & Q_6^2 & P_6 & Q_6 & 1
\end{vmatrix}
\]

where

\[
P_r = -(x \cos a_r + y \sin a_r) \cos a_r
\]
\[
Q_r = -(x \cos a_r + y \sin a_r) \sin a_r.
\]

Now

\[xP_r + yQ_r + P_r^2 + Q_r^2 = 0.
\]

Hence the above determinant vanishes.