VINOGRAWDOW'S SOLUTION OF WARING'S PROBLEM (II).

BY I. CHOWLA.

Received December 12, 1935.
(Communicated by Dr. S. Chowla.)

In the first part of this paper it was shown by the method of Vinogradow, as modified by Pillai, that

Theorem I. If Hypothesis P^* is true, then for $n > n_0$, there exists a number w depending only on n such that every large number $N \equiv 1 \pmod{w}$ can be expressed as a sum of $(3n + 2)'nth powers' \geq 0$.

In the rest of this paper we shall suppose that $n > n_0$. The method of my first paper enables us to formulate the more general

Theorem II. It is possible to find a number w depending only on n with the following property:

Let the sequence of positive integers ξ have the property that

$$\sum_{\xi \leq x} \frac{1}{\xi^{1-\epsilon}} \ll x$$

for every positive ϵ. Then every large $N \equiv (2f + 1) \pmod{w}$ is expressible in the form

$$(x_1^n + x_2^n + \cdots + x_{n+2}^n) + (\xi_1 + \xi_2)$$

where ξ_1 and ξ_2 are numbers of the "ξ sequence" and the x's are integers ≥ 0.

The following special case is of interest:

Let the ξ sequence consist of the primes $\equiv 1 \pmod{w}$ not exceeding x. Then the property $\sum_{\xi \leq x} \frac{1}{\xi^{1-\epsilon}} \ll x$ is true and hence (here $f = 1$):

Theorem III. There exists a number w depending only on n such that every large $N \equiv 3 \pmod{w}$ is expressible in the form

$$(x_1^n + x_2^n + \cdots + x_{n+2}^n) + (p_1 + p_2)$$

where the x's are integers ≥ 0 and p_1, p_2 are primes.

* Hypothesis P is that $H_{n,n}(x) \gg x^{1-\epsilon}$ for any $\epsilon > 0$. Here $H_{n,n}(x)$ denotes the number of numbers $\leq x$ which can be expressed as a sum of n "nth powers" ≥ 0. See the first part of this paper: Proc. Ind. Acad. Sci., (A), 1935, 2, 562-573.