NOTE ON HYPOTHESIS K OF HARDY AND LITTLEWOOD.

By S. Chowla,
Andhra University, Waltair.

Received February 11, 1935.

1. Let \(r_{s,k}(n) \) denote the number of distinct* representations of \(n \) as a sum of \(s \) positive \(k \)th powers. Hardy and Littlewood have conjectured that

\[
r_{s,k}(n) = O(n^e)
\]

for every positive \(e \). On the other hand it has not even been shown that for any\(^1\) fixed \(k \),

(1) there exists an \(n \) such that \(r_{s,k}(n) \geq 2 \).

I show that

Theorem 1. For \(k=7 \) there are infinitely many \(n \) satisfying (1).

Theorem 2. For \(k=9 \) there are infinitely many \(n \) satisfying (1).

2. We have

\[
\sum_{a=2,16,21,25} \{ (x+a)^7 + (x-a)^7 \} = \sum_{b=5,14,23,24} \{ (x+b)^7 + (x-b)^7 \}
\]

Integrating this twice w.r.t. \(x \) we get

\[
\sum_{a=2,16,21,25} \{ (x+a)^9 + (x-a)^9 \} = \sum_{b=5,14,23,24} \{ (x+b)^9 + (x-b)^9 \} + c x + d.
\]

Here \(d = 0 \), but \(c \neq 0 \). Putting \(x = \frac{y_1^6 - y_2^6}{c} \) we obtain

\[
\sum_{a=2,16,21,25} \{ y_1^9 - y_2^9 + ac \}^9 + (y_1^9 - y_2^9 - ac)^9 \} + (cy_2)^9
\]

\[
= \sum_{b=5,14,23,24} \{ (y_1^9 - y_2^9 + bc)^9 + (y_1^9 - y_2^9 - bc)^9 \} + (cy_1)^9.
\]

By proper choice of the integers \(y_1 \) and \(y_2 \), each side of (3) is a sum of nine positive ninth powers. Hence Theorem 2.

3. If we start with

\[
\sum_{a=7,14,21} \{ (x+a)^5 + (x-a)^5 \} = \sum_{b=1,18,19} \{ (x+b)^5 + (x-b)^5 \}
\]

instead of (2), and proceed as in the last section, we obtain Theorem 1.

* i.e., permutation of the bases not allowed, e.g., \(r_{2,5} (33) = 1 \).

\(^1\) That (1) is true for infinitely many \(n \) when \(k=5,6,8 \) is known. See papers by Rao and Sastry in *Journ. London Math. Soc.*, 1934, 9, 170-71, 172-73, 242-46.

592