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Abstract. Modelling of population dynamics of epidemic diseases is crucial in developing effective strategies

for curbing the diseases. It helps us identify the various parameters that can help control the epidemic if the

modelling is done carefully. Physical modelling of the dynamics in the form of circuits and systems can

augment the understanding of disease mechanisms. In this paper, we develop two electronic circuit models for

realizing the dynamics of two compartmental models widely used in epidemiological studies. These models are

important in the context of the current, rampant COVID-19 global pandemic. This innovative study will no

doubt pave the way for developing electronic circuits and analog processing systems that can simulate the

dynamics of more complex population models.
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1. Introduction

The variants of the COVID-19 pandemic pose formidable

challenges to the contemporary human civilization. The

repercussions of this crisis percolate into all domains of

human life on a global scale. While mankind is still groping

for effective solutions to contain this threat and its impacts

on life, an important aspect of finding such solutions is the

identification of the crucial parameters that may provide the

keys to reaching to such solutions. Such parameters are

imbedded in the dynamics of the disease. An important way

to understanding this dynamic is to study its impact on the

population. Population has a specific meaning in dynamics.

It refers to interacting groups in a model. The pioneering

studies in population dynamics were conducted by Volterra

in the 1930s and Lotka in the 1950s [1, 2]. A model for

predicting an epidemic based on convolution of statistical

functions is proposed in [3].

There have been many modelling techniques employed

for studying population interactions. In [4], the author

proposes to model population interactions using bond

graphs. Such models simplify the derivation of the related

state equations and also has the added flexibility for

investigating impact of structural changes in the models on

the interactions. A related method that is widely used now

is the compartmental model. In this model, the interaction

between populations is modelled as flows. In [5], the

dynamics of COVID-19 in the specific context of Ukraine

is investigated using compartmental modelling. The authors

have used an SEIR (Susceptible-Exposed-Infected-Recov-

ered) model for proposing solution for containing the dis-

ease. Compartmental models provide an efficient means for

mathematical modelling of epidemiology. In this method,

the population is divided into many compartments and the

interaction between these compartments are also specified.

The dynamics is often in the form of differential equations

that capture the dynamics of the state of each population.

This model gives a vivid picture of how populations change

rapidly or slowly. It can also depict the effect of the vari-

ation of the rate parameters on the change in the population

dynamics.

The monitoring and prevention of COVID-19 using

machine learning is discussed in [6]. The paper proposes a

method for predicting the evolution of the disease outbreak

in different scenarios. The model used is the SIR model.

Recent advances in computing like artificial intelligence

(AI), deep learning (DL), cloud computing etc., can also be

used modelling, forecasting and providing health care in the

COVID scenario. AI and deep learning algorithms are used

to understand the propagation of COVID-19 in South Korea

in [7]. AI is used in relation to the SEIR model in for the

prediction of the trend of the COVID-19 epidemic in China

in [8]. A comparison of the prediction of confirmed cases

between machine learning, deterministic SIR models and

stochastic SIR models is done in [9]. Hitherto, various

modelling strategies have been used for understanding the

COVID disease. Most of them are based on the formulation

of the underlying dynamics of the spread of the disease

among the population classes and confine to mathematical

modelling. But, till now, the physical modelling of the*For correspondence
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epidemiological dynamics is not an adequately investigated

area of research. A wave propagation model in an infinite

ordered lattice representing a population is proposed in

[10]. The paper gives a dissipative thermodynamic under-

standing of the COVID phenomenon. Yet, it does not

provide us with a tangible self-contained physical system

description that can capture the dynamics of the disease.

There is no doubt that various physical quantities like heat,

mass, humidity, light intensity could be metaphorically

used to develop physical models of the disease dynamics.

Yet, this area is more or less a largely unexplored one.

Another interesting transposition could be into the

domain of electrical and electronic circuits and systems.

Circuits provide a powerful medium for modelling various

phenomena. Circuits can be used to model neurons, trans-

mission lines, quantum phenomena etc. Methods like bond

graphs demonstrate the equivalence of electric circuits to

many systems in other domains. The behavior of basic

circuit elements can capture the dynamics of many systems.

State space equations can be converted to equivalent cir-

cuits using active and passive elements like transistors,

opamps, resistors, inductors, capacitors etc. Coupled dif-

ferential equations representing nonlinear systems and even

chaotic systems have been successfully implemented as

electronic circuits. An example is the Chua’s circuit

explained in [11]. Many other chaotic systems of various

orders have also been realized as circuits. Another related

domain is analog computation. Analog computers have

recently received a revived interest in relation to hybrid

computers [12].

In this paper we develop electronic circuit models for

representing the population dynamics of pandemic diseases

in general and COVID-19 in particular. We make use of

some existing prominent compartmental models to arrive at

these circuits. We simulate the behavior of these circuits

and compare and validate them by using the results

obtained from the mathematical models. To the best

knowledge of the authors, this is the first attempt to model

the dynamics of the infectious diseases in the form of

electronic circuits.

2. Mathematical models

In this section, we will discuss some prominent compart-

mental models that can be use to represent the transmission

dynamics of the disease. These models are in the form of

coupled differential equations that represent the states of

various population entities. Specifically, we discuss two

models : (1) SIR Model and (2) SIR-F Model. Even though

these models were developed for characterizing infectious

diseases in general, now they are widely used to study the

COVID phenomenon also because of their efficacy in

characterizing the various aspects of the disease.

2.1 SIR model

The SIR model [13] stands for three classes of population

namely, the Susceptible, Infectious and Removed classes.

The susceptible class of individuals comprises of all per-

sons who are susceptible to the disease. When a susceptible

individual contracts the disease, he will be transferred to the

infectious class. The infectious class consists of all persons

who have contracted the disease and are ill at a particular

time. The removed class comprises of the persons who have

recovered or have deceased. This may also contain the

persons who have acquired immunity in some manner. The

model equations are given below:

dS

dt
¼ � bIS

N

dI

dt
¼ bIS

N
� cI

dR

dt
¼ cI

9>>>>>>>>=
>>>>>>>>;

ð1Þ

Here, N is the total population given as N ¼ Sþ I þ R. The
flow in this model is given as S ! I ! R. The parameter, b
is the rate of infection or the rate at which individuals in the

S-class is transferred to the I-class. Similarly, c is the rate of
recovery, which means the rate at which the individuals

from the I-class are transferred to the R-class. This basic

model has been used to derive many other models for

characterizing epidemics. There are many works in the

related literature that discuss this model [6, 14].

2.2 SIR-F model

The SIR-F model is another variant of the SIR model. It

splits the R-class and creates another class for the deceased

persons called the F (fatality)-class. The resulting model

has four differential equations as compared to the three

equations of the SIR model. The equations are as given

below:

dS

dt
¼ � bIS

N

dI

dt
¼ bIS

N
� cI � lI

dR

dt
¼ cI

dF

dt
¼ lI

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð2Þ

Here, l is the mortality rate. This model is also used in

analyzing COVID-19 [6]. We use these two models to

develop their equivalent electronic circuits. The
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methodology and theoretical aspects related to the devel-

opment of these circuits are explained in the following

section.

3. Methodology

Differential equations can be modelled into electronic cir-

cuits using Opamps. An integrator can be used to represent

a differential equation. Consider the integrator circuit given

in figure 1. For this circuit the relation between the input

voltage (VIN) and the output voltage (VOUT ) is given as

VOUT ¼ � 1

RC

Z t

0

VIN dt ð3Þ

Equivalently,

dVOUT

dt
¼ � 1

RC
VIN ð4Þ

This can be used to model the differential equations of the

compartmental models of epidemics as is demonstrated in

the following subsection.

3.1 Electronic circuit for the SIR model

In figure 2, we have depicted an equivalent electronic cir-

cuit representing the SIR model. Three integrators are built

with opamps, OA1, OA2 and OA3 with the corresponding

outputs S, I and R respectively. Obviously, the inputs to

these opamps will be � dS

dt
, � dI

dt
and � dR

dt
respectively. The

analog multiplier A1 multiplies the signals, S and I. Two
inverters using OA4 and OA5 are used for getting the out-

puts I and R. Also, the following equations hold:

1

R1C1

¼ 1

R2C2

¼ b
N

1

R3C2

¼ 1

R4C3

¼ c

9>>=
>>;

ð5Þ

Also, R5 ¼ R6 and R7 ¼ R8 for unity gain inverters.

3.2 Electronic circuit for the SIR-F model

In figure 3, the electronic circuit for SIR-F model is

depicted. This circuit has four outputs S, I, R and F cor-

responding to the four population states of the SIR-F

model. These four values are obtained at the outputs of the

integrators represented by OA1, OA2, OA3 and OA4
respectively. If we consider Eqn. (2), the following iden-

tities hold for this circuit.

1

R1C1

¼ 1

R2C2

¼ b
N

1

R3C2

¼ 1

R5C3

¼ c

1

R4C2

¼ 1

R6C4

¼ l

9>>>>>>>>>=
>>>>>>>>>;

ð6Þ

Also, R5 ¼ R6 and R7 ¼ R8 for unity gain inverters.

4. Simulation and results

In this section, we discuss about the simulation of these

above circuit models and the results obtained for them. We

have used the Multisim circuit simulation software by

National Instruments to simulate these circuits.
Figure 1. Opamp integrator circuit.

Figure 2. Electronic circuit for SIR model.

Sådhanå           (2022) 47:47 Page 3 of 6    47 



4.1 Electronic circuit for SIR model

Given in figure 4 are the waveform plots for the SIR model

circuit depicted in figure 2. The circuit simulation is done

using Multisim. The population value is normalized to one.

Thus, we have chosen an initial value of 0.997 for S.
Also, I ¼ 0:03 and R ¼ 0, initially. These correspond to

99.7%, 0.3% and 0% of the population respectively for S , I
and R. Also, the parameters, b ¼ 0:4 and c ¼ 0:04.

From Eqn. (5) and figure 2, for a normalized value of

the population, we have b ¼ 1

R1C1

. We have chosen,

C1 ¼ 1mF. Therefore, for b ¼ 0:4, R1 ¼ 2:5X. Similarly,

R2 ¼ R1, if we choose C2 ¼ C1, because the magnitude of

the first term in the equation for I is the same as the

magnitude of the equation for S . The value of R3 and R4 are

25X for the given value of c ¼ 0:04 and choosing the

capacitor C3 as 1mF. The inverter resistors are chosen such

that R5 ¼ R6 and R7 ¼ R8, for unity gain inversion.

As can be seen, the recovered population approaches

100% after sometime with an intermediate short burst of

infection, which dies down after sometime (green). This

is so because in this model, once an individual is

infected, he will not catch an infection again and will be

moved to the R class from the I class. Thus, all indi-

viduals in the S class ultimately move to the R class. The

waveforms obtained at the outputs of this electronic

circuit is compared to that obtained by exact mathemat-

ical model. The differential equation of the SIR model

given in Eqn. (1) are simulated using Python program-

ming language. The same set of parameters are chosen

for the simulation. It can be seen that the waveforms

obtained from the electronic circuit follow a similar

pattern as is obtained from the mathematical model.

Further tuning of the circuit could bring it to an identical

behavior as is the SIR model simulation. But what is

remarkable is that a physical electronic realization of the

dynamics of this model can be realized (figure 5).

4.2 Electronic circuit for SIR-F model

The waveform plots from the simulation of the electronic

circuit of the SIR� F model given in figure 3 is shown

in figure 5. The values of the parameters are chosen as

b ¼ 0:4, c ¼ 0:035 and l ¼ 0:005, where l is the mor-

tality rate. Here again, we make use of a normalized

population. The values of the resistors R1, R2 and the

capacitors C1;C2;C3 are the same as that for the circuit

Figure 3. Electronic circuit for SIR-F model.

Figure 4. The output waveforms from the electronic circuit for

the SIR model (S (red), I (green) and R (blue)).

Figure 5. The output waveforms from the simulation for the SIR

model (S (red), I (green) and R (blue)).
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for the SIR model. Similarly, R3 ¼ R5 ¼ 28:57 X, which
is determined by the new value of c ¼ 0:035 according

to Eqn. (5).

For, l ¼ 0:05, the values of the resistances R4 and R6 is

20X. The values of the resistors R7;R8;R9;R10;R11 and

R12 of the inverters are identical. In practice, it may

sometimes be necessary to adjust the gains of these

inverters to compensate for any parasitic effects in the

circuit. Remarkably the dynamics of the compartmental

model is essentially captured by this circuit also. This is

demonstrated in figure 6, where we have given the

observed outputs from the simulation of the circuit using

Multisim.

b ¼ 0:4 corresponds to a very high infection rate. Thus,

we can see that a mortality rate of around 15% is sustained

in this model for the chosen set of parameters. In figure 7,

we have given the graph of the compartmental model

plotted using Python. Our circuit could be seen to follow

this model almost identically.

5. Conclusion

In this paper, we have developed electronic circuits to

simulate the behavior of the SIR and SIR-F compartmental

models that capture the population dynamics in epidemio-

logical studies. These models and their variants are relevant

in the current context of the pandemic, COVID-19. This

pioneering work for the realization of the dynamical

models for epidemiological models as analog electronic

circuits will no doubt pave the way for further studies in the

direction of analog computation and processing of the

epidemiological models through equivalent real physical

systems. More sophisticated models can also be imple-

mented as electronic circuits through careful design. This is

a novel area of research and modelling in epidemiological

studies.
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