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Abstract. Biomaterials are natural/synthetic materials used to perform the functions of living tissues in the

body. Biomaterials are in contact with fluids continuously or for a certain period. The body’s reactions to these

materials are extremely different. For this reason, the correct selection of biomaterials is essential. In this

research, a novel multi-criteria decision-making procedure (Reference Ideal Method) has been used for ortho-

pedists/practitioners, prosthesis and implant manufacturers. This method produces successful results, especially

in target-based problems. The method has not been used for the selection of target-based biomaterials before. In

this study, it was applied to two different biomaterial selection problems from the literature. Consistent results

have been produced with studies in the literature.

Keywords. Biomaterial selection; Multi-criteria decision making (MCDM); Reference ideal method.

1. Introduction

Engineers/manufacturers handle the problem of choosing

materials in design engineering. Due to progress in mate-

rials and manufacturing science, several materials are now

available. Consequently, the choice of materials can be a

complicated issue. Multiple criteria decision making

(MCDM) procedure can derive a mathematical framework

for the material selection process. Target-based MCDM

methods can be significant when goal values are desired in

the selection process. When all kinds of criteria are con-

sidered in target-based MCDM, it can be an extensive form

of conventional decision-making (DM) with several

criteria.

In different problems based on material selection, the

selected materials should be consistent in terms of dif-

ferent methods. Thus, target values should be taken into

account for materials characteristics to provide compat-

ibility [1]. A target value should be defined for the

thermal expansion coefficient to select electrical insu-

lating materials [2]. Material hardness, density and

elastic modulus are other examples for target-based cri-

teria [3]. The material characteristics are essential to

choosing appropriate implants and prostheses’ materials

[4, 5]. DM procedures with target-based criteria attracted

the attention of several researchers. Jahan and Edwards

[6] studied the target-based Vise Kriterijumska Opti-

mizacija I Kompromisno Resenje (VIKOR) procedure

for knee prosthesis material selection. They enhanced the

Technique for Order Preference by Similarity to Ideal

Solution (TOPSIS) and VIKOR models to choose mate-

rials for the femoral element of a hip prosthesis using

target values. Liu et al [7] presented a hybrid approach

by incorporating Analytic Network Process (ANP) model

based on the decision-making trial and evaluation labo-

ratory (DEMATEL) approach and the target-based

VIKOR procedure to choose bush of a split journal

bearing’s material. Hafezalkotob and Hafezalkotob [5]

resolved different problems based on biomaterial selec-

tion via target-based MULTIMOORA method. Jahan and

Edwards [2] reviewed the uses of target-based normal-

ization techniques. Petkovic et al [8] developed a deci-

sion support system by hybridizing three MCDM tools to

select desired bone implants biomaterial alternative. Abd

et al [9] used a fuzzy approach for the TOPSIS technique

to select hip joint prosthesis material. Kabir and Lizu

[10] developed a hybrid FAHP/PROMETHEE method

for the femoral material selection problem. Chowdary

et al [11] determined a new strategy to rank bioengi-

neering materials under a hybrid approach (fuzzy AHP

and TOPSIS). The article suggests that Polyether ether

ketone (PEEK) material is appropriate for biomedical

implantations. Xue et al [12] used an original target-

based norm in a multi-attributive border approximation

area comparison (MABAC) technique to choose the

suitable hip implant material. Hafezalkotob and

Hafezalkotob [13] used an interval MULTIMOORA

technique using target values of criteria and interval

distance and preference degree were taken into account.

Two different studies, which are hip and knee joint

prosthesis materials selection, were used. Ristic et al [14]
designed a fuzzy expert system for implant biomaterial

selection. Hafezalkotob et al [15] used a normalization

procedure based on an exponential target for developing
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Weighted Aggregated Sum Product Assessment (WAS-

PAS) technique to choose olive harvester machinery.

Liao et al [16] derived an extended target-based formula

to solve MCDM problems using the benefit, cost and

target criteria. Practically the ideal solution is not nec-

essarily one of the extreme values, but maybe a value

somewhere in between. For several MCDM techniques,

the techniques are based on the data; this implies that

when adding a new option or only by changing the data

of one of the options, it is then essential to carry out the

aggregation of the information for all the options. This

problem is called rank reversal problem in the literature.

The methods used in target-based criteria problems do

not solve the rank reversal problem in the literature.

Reference Ideal Method (RIM) is a novel MCDM pro-

cedure designed by Cables et al [17]. The procedure is

used to eliminate the problems mentioned before. It can

be used to solve target-based criteria problems. Newly,

Cables et al [18] proposed the RIM in a fuzzy MCDM

environment. Also, Lozano and Rodriguez [19] studied

Fuzzy RIM to select military training aircraft.

In this article, a novel MCDM (RIM) method has been

used for orthopedists/practitioners, and prosthesis and

implant manufacturers. Two different biomaterial selection

case studies (hip prosthesis material selection and femur

component material selection problems) have been selected

to use this method. This procedure has not been used in

biomaterial applications to the best of our knowledge,

which is one of the target-based criteria problems. In the

study, a new hybrid approach was proposed for RIMs with

different subjective and objective weighting methods

(modified digital logic (MDL), SIMOS, standard deviation

and dependency weighting).

In the first stage of the research, the RIM stages and a

newly proposed method are given. In the second step, two

different biomaterial selection applications from the liter-

ature are explained. In the third stage, the solution of these

problems with RIM is mentioned. The results are compared

to the literature. Results and suggestions are included in the

last stage.

2. Methods

2.1 RIM

This technique was proposed by Cables et al [17]. The

procedure is given as follows.

Step 1: Normalization stage. The reference ideal interval is

determined. The interval contains label sets and simple

values that show the maximum importance or relevance

(Eqs. 1–3).

dimin x; C;D½ �ð Þ ¼ min x� Cj j x� Dj jð Þ ð1Þ

x; A;B½ �; C;D½ �ð Þ ¼

1 if x 2 C;D½ �
1� dimin x; C;D½ �ð Þ

A� Cj j if x 2 A;C½ � ^ A 6¼ C

1� dimin x; C;D½ �ð Þ
D� Bj j if x 2 D;B½ � ^ D 6¼ B

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð2Þ
y ¼ f xik; tk; skð Þ½ � ð3Þ

A;B½ �: range for universe of discourse

C;D½ �: reference ideal interval

di: distance to reference ideal interval

sk : reference ideal

x is the value for a given approach

x[[A,B] and [C,D],[A,B] should be satisfied.

The function f allows finding a value that belongs to the

unitary interval.

k = 1 to m (number of criteria)

i = 1 to n (number of options)

Step 2: Compute the weighted normalized matrix ð _yikÞ.
Step 3: Compute the variation to the normalized reference

ideal for each option (Eqs. 4–5)

I�e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

_yikð Þ2
s

ð4Þ

Iþe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

_yik � wkð Þ2
s

ð5Þ

Step 4: Compute the relative index (ReÞ using Eq. 6.

Re ¼ I�e
I�e þ Iþe

ð6Þ

Step 5: Rank the options.

2.2 Proposed method

In this study, a new hybridized RIM was proposed. Dif-

ferent criteria weighting methods (MDL, SIMOS, standard

deviation and dependency weighting) were used to weight

criteria. Later, RIM was used to obtain final rankings. Also,

the criteria weighting methods were combined to perform

sensitivity analysis. More information about these methods

are given in the literature [20–23]. The flowchart of the

proposed method is given in figure 1.

3. Case studies

3.1 Case study-1: hip prosthesis material selection

A hip replacement consists of three primary components:

femoral component, acetabular cup and acetabular
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interface. The femoral component is a hard metal pin. The

hip socket (acetabulum) is placed with an acetabular cup.

The acetabular interface is placed between the femoral

component and the acetabular cup. It includes various

material combinations to reduce friction-related wear resi-

dues. Appendex A lists the materials/criteria used in the

analysis.

3.2 Case study-2: femur component material
selection

The knee replacement is implanted into the human body

to restore function and form. To obtain a natural knee

performance, prosthetic materials need to have a variety

of properties. In this matrix, currently used metallic

biomaterials (biocompatible materials) and newly

developed metallic biomaterials that could potentially

be used for the femoral component of knee joint

implants are taken into account. For any knee implant to

be successful, it must have high wear resistance, high

modulus of elasticity and high biocompatibility.

Appendex B summarizes the range of parameters used

in the analysis.

4. Results and discussion

4.1 Case study-1

Different criteria weighting methods used in the litera-

ture were selected in this study. The criteria weights used

are given in table 1. MDL approach was used for sub-

jective criteria weighting, whereas standard deviation

method was used for objective criteria weighting. When

the criteria weights are evaluated the criteria of tissue

tolerance and corrosion resistance have the highest

weight for subjective weighting, while corrosion resis-

tance and relative toughness have the highest weight for

objective weighting. The determined matrices are given

as follows:

AB ¼ 7; 10; 7; 10; 130; 600; 430; 985; 7; 10; 2;½
10; 1:4; 9:1; 20; 242; 1; 10�;

CD ¼ 10; 10; 10; 1; 600; 600; 985; 985; 10; 10;½
10; 10; 2:1; 2:1; 20; 20; 1; 1�:

Different criteria weights were integrated into the RIM

method. Thus, final rankings were obtained. The rankings

are shown in table 2. Co–Cr alloys-wrought alloy and

Ti6Al4V are the best alternatives, whereas Composites

(fabric reinforced) Epoxy-63% carbon and Composites

(fabric reinforced) Epoxy-62% aramid are the worst

alternatives according to the ranking results. In terms of

different assigned weights, the Spearman test was used to

evaluate significance of the difference between Jahan and

Edwards’s [20] literature ranking in table 2. There is no

significant difference between the rankings (r[0.61, p\
0.05). As a result, it can be said that the result does not

change significantly according to different criteria

weights.

According to Jahan and Edwards’s [20] weighting

method, different k values were tried to perform sen-

sitivity analysis. In the analysis, subjective, objective

and dependency weights were integrated as given in

Eq. (7).

wj ¼ ws
jkþ wo

j

1� kð Þ
2

þ wc
j

1� kð Þ
2

; j ¼ 1; 2; 3; . . .; n

ð7Þ
ws
j : subjective weighting (MDL)

wo
j : objective weighting (standard deviation)

wc
j : dependency weighting

k: sensitivity coefficient 0� k� 1

n: the number of criteria.

The results were compared in terms of the correlation

test of Spearman. The final results are shown in table 3. The

rankings are nearly the same (r[ 0.73, p\ 0.05). Co–Cr

alloys-wrought alloy and Ti6AlV are the best options. The

undesired options are nearly the same as those with the

rankings in table 2.

Determining the criteria and alternatives

Calculating all types of weights (Modified digital logic, Simos, standard deviation and dependency weighting)

Combining all types of weights under uncertainty

Ranking with Reference Ideal Method using different weights

Performing the Spearman Correlation test to compare rankings

Figure 1. The flowchart of the proposed method.
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4.2 Case study-2

Different criteria weighting methods used in the literature

were used in case study-2. The weights are shown in

table 4. Two subjective criteria weighting methods (MDL

and SIMOS weighting) were used. When the criteria

weights are evaluated, it is seen that the highest criterion

weight belongs to the wear resistance and the lowest cri-

terion weight to density. The determined matrices are given

as follows:

AB ¼ 1:3; 9:13; 517; 1240; 15; 240; 10; 54; 0:665;½
0:955; 0:59; 0:955; 0:5; 0:955�;

CD ¼ 1:3; 1:3; 1240; 1240; 16; 16; 54; 54; 0:955;½
0:955; 0:955; 0:955; 0:955; 0:955�:

Different criteria weights in table 4 are integrated into

the RIM method. Thus, final rankings were obtained. The

rankings are given in table 5. According to the results, NiTi

SMA and Porous NiTi SMA are the best alternatives. The

Spearman correlation test was used to verify statistical

significance with Bahraminasab and Jahan’s [21] ranking in

terms of different criteria weights. This test indicates no

statistical difference and the rankings are nearly the same

(r[0.8, p\0.05). As a result, it can be said that the result

does not change significantly according to different criteria

weights.

According to Bahraminasab and Jahan’s [21] weight-

ing method, different k values were tried to perform

Table 1. Criteria weights and criteria weighting methods used in the literature [20].

C1 C2 C3 C4 C5 C6 C7 C8 C9

Subjective weighting 0.2 0.2 0.12 0.08 0.08 0.08 0.08 0.08 0.08

Objective weighting 0.137 0.128 0.096 0.092 0.1 0.13 0.11 0.114 0.094

Dependency weighting 0.095 0.102 0.084 0.089 0.098 0.102 0.162 0.165 0.103

Table 2. Rankings obtained by RIM method according to different criteria weights.

Different criteria weighting methods Rankings r/p with Jahan and Edwards’s literature ranking [20]

Subjective weighting 5-7-8-6-3-1-4-2-9-11-10 1/0.00

Objective weighting 8-6-7-5-4-2-3-1-9-11-10 0.936/0.00

Dependency weighting 8-6-7-5-9-4-2-1-3-11-10 0.618/0.043

Final weighting with respect to different k values [20]5-7-8-6-4-1-3-2-9-11-10 –

Table 3. Rankings obtained by RIM method according to different k values.

Different k values according to dependency weight [20] Rankings r/p with Jahan and Edwards’s study [20]

k = 0 9-6-8-5-7-3-2-1-4-11-10 0.736/0.01

k = 0.2 7-6-8-5-4-2-3-1-9-11-10 0.964/0.00

k = 0.4 5-7-8-6-4-2-3-1-9-11-10 0.991/0.00

k = 0.6 5-7-8-6-4-2-3-1-9-11-10 0.991/0.00

k = 0.8 5-7-8-6-3-1-4-2-9-11-10 0.991/0.00

k = 1 5-7-8-6-3-1-4-2-9-11-10 0.991/0.00

Table 4. Criteria weights and criteria weighting methods used in

the literature [21].

C1 C2 C3 C4 C5 C6 C7

SIMOS weighting 0.07 0.1 0.14 0.1 0.18 0.23 0.18

MDL weighting 0.07 0.11 0.14 0.11 0.18 0.2 0.19
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sensitivity analysis. Eq. (8) was used to perform the

analysis:

wj ¼ w1
j kþ w2

j 1� kð Þ; j ¼ 1; 2; 3; . . .; n ð8Þ
wj: average weight

w1
j : pairwise comparing weight (MDL)

w2
j : direct weight (SIMOS)

k: sensitivity coefficient, 0� k� 1

n: the number of criteria.

The results were compared in terms of Spearman corre-

lation test. The final results are given in table 6. The

rankings are nearly the same (r [ 0.98, p \ 0.05). NiTi

SMA and Porous NiTi SMA are the best options. Stainless

steel (annealed) is the worst option, as in table 5.

4.3 Limitation of the study

The absence of Pareto optimality limited this study. Several

criteria may be mutually conflicting. In such a scenario, a

Pareto-optimality determination can be more appropriate

than a weighting method. Multi-objective optimization

based upon the notion of Pareto-optimality and evolution-

ary algorithms has been applied earlier for biomaterials.

Reduced Space Searching, Artificial Neural Network and

Genetic algorithms were used to design Ti alloys for bio-

applications [24–26]. In future studies, these methods can

be considered and hybridized.

5. Conclusions

In this research, a new MCDM method (RIM) has been

used for biomaterial selection. The method has been

tested on two different biomaterial selection problems

taken from the literature. The results were compared to

the studies in the literature. Co–Cr alloys-wrought

alloy and Ti6Al4V are the desired options for hip

prosthesis material. For femur component selection

problem, NiTi SMA and Porous NiTi SMA are the best

alternatives. The rankings are consistent in terms of the

Spearman correlation test (p \ 0.05). Also, according

to sensitivity analysis, the rankings are nearly the same

(p \ 0.05). In general, it has been observed that the

method does not depend on the criteria weight values

(p \ 0.05). In future studies, RIM can be hybridized

with different criteria weighting methods. Besides, a

program can be developed using C?? platform to

make the DM process more interactive. Moreover, the

price can be considered as a criterion for femur com-

ponent selection problem.

Table 5. Rankings obtained by RIM method according to different criteria weights.

Different weighting methods Rankings r/p with Bahraminasab and Jahan’s study [21]

SIMOS weighting 10-9-6-7-8-4-5-3-1-2 0.806/0.005

MDL weighting 10-9-7-8-6-4-5-3-1-2 0.891/0.001

Final weighting with respect to different k values [21] 8-7-9-10-6-4-5-3-2-1

Table 6. Rankings obtained by RIM method according to dif-

ferent k values.

Different k values

according to

dependency weight

[21] Rankings

r/p with

Bahraminasab and

Jahan’s study [21]

k = 0 10-9-6-8-7-4-5-3-1-2 0.988/0.00

k = 0.1

k = 0.2 10-9-7-8-6-4-5-3-1-2 1.00/0.00

k = 0.3

k = 0.4

k = 0.5

k = 0.6

k = 0.7

k = 0.8

k = 0.9

k = 1
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