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Abstract. Bauxite residue (BR) is the hazardous waste produced during extraction of alumina by processing

of bauxite ore. BR has an adverse effect on humans and the environment due to its disposable problem. To

minimize the environmental impact, BR must be effectively utilized. One such way is to use BR as a reinforcing

for metal matrix composite. In this study, Taguchi’s mixed fractional factorial experimentation (L18) approach

is employed in the development of Al6063/BR composite through advanced stir casting process. The process

parameters considered are stirring speed (rpm), reinforcement particle size (lm), reinforcement weight fraction

(wt%) by weight of the matrix phase, pouring temperature (�C), and preheat temperature (�C). Later, ANOVA
results indicate that particle percentage (wt%) is the major contributor in the development of porosity content.

Moreover, the interaction of process parameters was also found to have an impact on porosity content. The

outcome of the study reveals that the stirring intensity at 350 rpm, particle size at 80 lm, particle percentage at 2

wt%, pouring temperature at 730 �C, and preheat reinforcement temperature at 450 �C are the optimal conditions

for fabricating defect free Al6063/BR composite.
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1. Introduction

Bauxite residue (BR) is the hazardous residue produced

during the extraction of alumina through Bayer’s process

[1, 2]. High caustic and alkalinity content, presence of

radionuclides and toxic elements in BR causes environ-

mental risk for fertile soil and ground water contamination

[3, 4]. The high caustic content in BR leads to human health

risks, like irritation to eyes and dermal problems [4].

Moreover, disposal of BR requires large area. Many

countries like USA, India and China dumped BR into pools

and constructed ponds. However, Japan, France, Greece

dumped BR into sea water, causing harm to the aquatic life

[1, 4, 5]. Such adverse effects can only be mitigated if we

utilize bauxite residue effectively. Its major constituents

like Al2O3, TiO and SiO2 make it favorable for utilization

as filler/reinforcement in development of metal matrix

composites (MMCs) [4, 5].

In the past two decades, numerous aluminum particulate

metal matrix composites (PAMMCs) were developed by

various researchers using different reinforcement like

Al2O3, SiC, B4C, TiB2, Zr2O through conventional stir cast

process [6–8]. Conventional stir cast process is an eco-

nomical process, but the limitations include agglomera-

tion/clustering of particles, poor wettablity, higher porosity

content and void formation in composite [5, 9]. To over-

come these problems it is essential to determine the optimal

process parameters in fabrication of the PMMC through

advanced stir cast process.

In the present investigation, different process parameters

and their range was identified through extensive literature

review [10–14]. Taguchi L18 (fractional factorial mix

design) approach was used to obtain optimal process

parameters in the development of robust Al6063/BR com-

posite through advanced stir cast process. Porosity content

is selected as output response characteristic. Further, a

general linear model of ANOVA was performed to deter-

mine the major contribution of the selected process

parameter on the output response characteristic. Confir-

mation experimentation was also performed to validate the

obtained range of selected process parameters through

Taguchi analysis.

Moreover, bottom pouring in vacuum environment is

adopted (figure 1) to improve the quality characteristics of*For correspondence

Sådhanå          (2020) 45:200 � Indian Academy of Sciences

https://doi.org/10.1007/s12046-020-01439-6Sadhana(0123456789().,-volV)FT3](0123456789().,-volV)



Al6063/BR composite. The main advantage of the bottom

pouring is that it minimizes the porosity content, which was

the major drawback of conventional stir casting pouring

process [5].

2. Materials and methodology

In the present study, an Al6063 (Al–Mg–Si) alloy is used as

the base matrix and bauxite residue (BR) as the reinforce-

ment to develop the particulate metal matrix composite

(PMMC) through advanced stir cast process (figure 2). The

BR was collected from Reenukoot HINDALCO. The ele-

mental composition of the base matrix and reinforcement

phase is listed in tables 1 and 2. An advanced stir cast

process is chosen to develop Al6063/BR composite with

defined set of process parameters with their ranges. The

response characteristics i.e., porosity content was measured

by comparing the theoretical and experimental densities of

developed composite. The theoretical density of developed

composite was measured through rule of mixture equation

(1) and experimental density was calculated using

microbalance (Denver Instruments ST 234 Summit Series

Analytical Balance) which had an accuracy of 0.1 mg.

Measurements of each sample were done thrice to deter-

mine the mean value. The deviation percentage between the

theoretical and experimental observations was calculated to

obtain the porosity percentage in cast Al6063/BR

composite.

qc ¼
1

Wm

qm
þ Wr

qr

ð1Þ

Where, Wm and qm is the weight fraction and the density of

base matrix respectively, Wr and qr is the weight fraction

and the density of the reinforcement phase, respectively, qc
is the density of the developed composite.

2.1 Process parameters of advanced stir casting

The present investigation is focused on the robustness of

advanced stir cast process to develop PMMC. The fol-

lowing key elements were observed in achieving the target

value.

Figure 1. Advanced stir cast set-up.
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1. To select the most significant factor that has dominant

effect on the response characteristic.

2. To minimize the defects like porosity content and non-

homogeneous distribution of reinforcement particles in

cast samples considered as the most dominant quality

characteristic in the development of sound PMMC

through advanced stir cast process.

3. Develop the robust design using Taguchi orthogonal

array experimental design for advanced stir cast process

and collect the response characteristic data.

4. Generate the statistical significant parameter through

ANOVA. Plot the graphs of response characteristics to

determine the optimum levels of each process

parameters.

5. Verify the optimal conditions in minimizing the defects

(porosity content) in casting through confirmation

experimentation test.

An Ishikawa diagram was drawn to identify the process

parameters of stir casting route that may have impact on the

performance of the composite (figure 3). In the present

study, the process parameters are selected to observe the

effect on response characteristics i.e., porosity content and

homogeneous distribution of the reinforcement phase in

development of robust Al6063/BR composite.

1. Stirring characteristics

2. Reinforcement characteristics

3. Processing characteristics

4. Types of base matrix

5. Pouring environment

For each process parameters except stirring intensity,

three levels are selected in conducting the experiments

(table 3). The first parameter i.e., stirring intensity, level is

taken at two levels. The selection of levels for different

process parameters was based on the trial run conditions.

The trials were performed and limits were determined in

analyzing the response characteristics. From trial runs, it

was also observed that with increase in stirring intensity

(parameter first) from 350 to 450 rpm the porosity content

is increased. Particle size was chosen as the second

parameter and different BR particle size was determined by

sieve analysis. The BR particle size range was selected to

avoid the agglomeration phenomenon of the particles. A

decrease in particle size leads to increase in surface area

and causes agglomeration phenomena in cast structure.

During the trials no agglomeration is observed up to 6% of

particle percentage (parameter third). Beyond this limit,

agglomeration of the particles seen in cast structure has

been earlier reported [5]. The pouring temperature was

Figure 2. Fabricated samples Al6063/BR composite through advanced stir cast process.

Table 1. Elemental composition of the base matrix.

Elements Cu Mg Si Fe Ni Mn Zn Pb Sn Ti Cr Al

(%) 0.03 0.417 0.478 0.151 0.003 0.072 0.005 0.022 0.01 0.016 0.007 98.76

Table 2. Elemental composition of bauxite residue

Elements Fe2O3 Al2O3 TiO2 SiO2 Na2O CaO P2O5 Others

(%) 35.26 21.89 15.11 12.46 11.82 1.83 0.40 1.63
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chosen as the fourth parameter in fabrication of metal

matrix composite. Preheat temperature was chosen as the

last parameter to predict the behavior of hydrous minerals

present in BR which causes porosity in cast composite.

2.2 Selection of orthogonal array

In the present study, the L18 orthogonal array is used for

conducting the experimentation. The extensive literature

study reveals that porosity content occurs in cast composite

is due to increase in reinforcement weight fraction and size,

vigorous stirring speed, and preheat conditions of the

reinforcement particles [5, 14–16]. Therefore, above said

parameters are assumed to have significant influence on the

porosity content and homogeneous distribution of BR in the

base matrix. After selections of parameters, interactions

between parameter, and their levels the required total

degree of freedom (m) comes to be 15 (number of level—1)

(table 4). However, with L18 orthogonal array the available

total degree of freedom (mavl) is 17 that is greater than the

required degree of freedom (mavl[ required, i.e., 17[ 15).

Hence, 18 experimental runs were selected for the L18

orthogonal array by assigning of eight columns as shown in

tables 4 and 5. Linear graph exhibits various columns to

which parameters may be assigned and the columns sub-

sequently evaluate the interaction of those factors [17].

2.3 Experimental design statistical calculations

The output response characteristic i.e., porosity content was

obtained as per the defined experimental design in table 6.

The experiments for each set of defined design were per-

formed twice to minimize the variations in output response

characteristic. For each set of experiment, the porosity

Figure 3. Ishikawa cause and effect diagram for stir casting process.

Table 3. Advanced stir cast process parameters and their levels.

Sl. No. Labels Process parameter Range Units Level 1 Level 2 Level 3

1 A Stirring intensity 350–450 rpm 350 450 –

2 B Particle size 120–80 lm 120 100 80

3 C Particle percentage 2–6 wt% 2 4 6

4 D Pouring temperature 710–750 �C 710 730 750

5 E Preheat temperature 250–450 �C 250 350 450

Mould preheat temperature: 300 �C
Magnesium : 1%
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content was measured thrice and the average was taken in

response column. Porosity content was considered as

‘‘lower the better’’ output. Lower the better S/N ratios was

also calculated and presented in table 6.

S=NLB ratio ¼ �10 log½ð
X

X2iÞ=n� ð2Þ

For the smaller is the better, the quality characteristic,

S/N ratio can be calculated as [17, 18]:

S=Ni ¼ �10 log
XNi

u¼1

X2
u

Ni

 !
ð3Þ

For example, for trial no. 1, the S/N ratio is:

S=NLB ¼ �10 log½ð
X

X2iÞ=n�
S=Nratio ¼ �10 log½ð0:632Þ2 þ ð0:501Þ2�=2

¼ �4:875

2.3a Statistical analysis of output response characteris-
tics The average value of the porosity content and S/N

ratio for each parameter at different level is considered as

mean value (table 7). The mean values of quality charac-

teristics and S/N ratio are calculated by adding the response

of all trial conditions at the selected level, and then dividing

by the number of observations made (table 7).

Where, the response A (L1) for parameter A are calcu-

lated as [19].

A (L1) = (X11 ? X12) ? (X21 ? X22) ? (X31 ? X32)

? (X41 ? X42) ? (X51 ? X52) ? (X61 ? X62) ? (X71 ?

X72) ? (X81 ? X82) ? (X91 ? X92) and similarly for A

(L2).

The calculated statistical output response characteristics

for each parameter at their defined levels are plotted in

figures 4 and 5. Minimum porosity content was observed at

350 rpm stirring intensity (parameter A-L1), 80 lm particle

Table 4. Assignment of process parameters and interactions

using L18 fractional factorial design.

Trail No. A B AxB C AxC BxC D E

1 1 1 1 1 1 1 1 1

2 1 1 2 2 2 2 2 2

3 1 1 3 3 3 3 3 3

4 1 2 1 1 2 2 3 3

5 1 2 2 2 3 3 1 1

6 1 2 3 3 1 1 2 2

7 1 3 1 2 1 3 2 3

8 1 3 2 3 2 1 3 1

9 1 3 3 1 3 2 1 2

10 2 1 1 3 3 2 2 1

11 2 1 2 1 1 3 3 2

12 2 1 3 2 2 1 1 3

13 2 2 1 2 3 1 3 2

14 2 2 2 3 1 2 1 3

15 2 2 3 1 2 3 2 1

16 2 3 1 3 2 3 1 2

17 2 3 2 1 3 1 2 3

18 2 3 3 2 1 2 3 1

Table 5. Experimental L18 orthogonal array.

Trial

No.

Controlled Parameters

A B C D E

Stirring intensity

(rpm)

Particle size

(lm)

Particle percentage

(wt.%)

Pouring temperature

(�C)
Pre heat temperature

(�C)

1 350 120 2 710 250

2 350 120 4 730 350

3 350 120 4 750 450

4 350 100 2 750 450

5 350 100 4 710 250

6 350 100 6 730 350

7 350 80 4 730 450

8 350 80 6 750 250

9 350 80 2 710 350

10 450 120 6 730 250

11 450 120 2 750 350

12 450 120 4 710 450

13 450 100 4 750 350

14 450 100 6 710 450

15 450 100 2 730 250

16 450 80 6 710 350

17 450 80 2 730 450

18 450 80 4 750 250
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size (parameter B-L3), 2 wt% of particle percentage

(parameter C-L1), 730 �C pouring temperature (parameter

D-L2), and 450 �C preheat temperature of reinforcement

(parameter E-L3). The signal to noise ratio is also on higher

side at above said parameter’s level (figure 5), is the best

value for getting minimum porosity content in the devel-

opment of the robust Al6063/BR composite.

S/N ratio is signal to noise ratio where signals means

response (output variable) and noise means uncontrollable

variable like environmental temperature, humidity, human

variation, etc. S/N ratio considers both target and variation

in repetition of experiment. Target consists of experiment

objectives i.e., higher is better, lower is better or nominal is

best [13, 17, 20]. For example, mileage of an automobile is

higher is the best, defects in cast products—lower is the

better, diameter of cylindrical shaft—nominal is the best.

Second, the variation in repetition of experiment for

example experiments are repeated but produces different

results, this is due to noise factor like environmental con-

dition, human variation, etc.

The statistical analysis plots had shown in figures 4 and 5

gives the optimum mean value of the output response

characteristics at level of their respective parameters rather

than significant effect of the parameter. Hence, it is

required to obtain the optimum process parameters that

have impact on the porosity content. In present investiga-

tion, general linear model of ANOVA is applied to predict

the optimum process parameter by analyzing the statistical

total variation in the process (tables 8 and 9). The overall

variation in the output response characteristics is broken up

into following components:

1. Variation due to individual parameters A, B, C, D, and E

2. Variation due to parameter’s interactions AxB, AxC, and

BxC

3. Variation due to error

Total variation, SST = [SSA ? SSB ? SSC ? SSD-
? SSE ? SSAxB ? SSAxC ? SSBxC] and Variation due to

error, SSe = SST - [SSA ? SSB ? SSC ? SSD ? SSE ?

SSAxB ? SSAxC ? SSBxC] = 0.18

Total degrees of freedom for error Ve = VT - [VA ?

VB ? VC ? VD ? VE ? VAxB ? VAxC ? VBxC] = 35 -

15 = 20.

3. Results of ANOVA study

ANOVA identifies the significant process parameters and

their interactions which significantly influence the output

response characteristics i.e., porosity content (tables 8 and

9). However, some more information is required to deter-

mine the output response with an optimum setting of

parameters [21].

Before interpreting and determining the output response

through ANOVA, it is mandatory to check some

assumptions like normality, independence, and constant

variance. Normality of experimental data is checked by

constructing each residual plot against its expected value

under normality (figure 6). This plot is linear if these

residuals are normally distributed. If plot does not appear

linear through visual observation then there residual is

further analyzed using coefficient of correlation of the plot

[19]. Further, independence assumption on the residuals is

checked by constructing the plot of residuals in time order

of data collection (figure 7). The constructed plot should

not contain any pattern. In the present study, Durbin–

Watson test was adopted in checking the residual’s inde-

pendence assumption. If the statistic value of Durbin test

is greater than its corresponding upper critical value then

the assumption on residuals are independent. Moreover, F

ratio test is incorporated rather than plotting residuals

versus predicted assumption to determine residual vari-

ance constancy in the present study. The residuals have

constant variance, if the statistical F ratio is less than or

equal to its corresponding critical value (refer to table 8).

Since all the assumption made in analysis were carefully

checked and no violation of assumption was predicted.

Therefore, the general leaner model of ANOVA is used in

present study.

Statistical observation reveals that the F-ratio of param-

eters A, C, and E is greater than the significant value

(table 8). Hence, the selected parameters have a significant

effect on the output response characteristic. However,

factor B is not significant due to F ratio test statistic is 2.33

that is less than the critical accepted value of F ratio i.e.,

3.49. But its interaction AxB and BxC is in significant level

because there statistic F ratio is greater than its critical F

Table 6. Average response characteristic and their respective

S/N ratio (dB).

Trail No.

Porosity content in%

S/N ratio (dB)Avg. R1 Avg. R2 Average

1 0.632 0.501 0.5665 4.875

2 0.908 0.848 0.878 1.122

3 1.041 1.422 1.2315 -1.914

4 0.481 0.497 0.489 6.206

5 0.645 0.591 0.618 4.166

6 1.213 1.003 1.108 -0.931

7 0.491 0.515 0.503 5.963

8 1.209 1.311 1.26 -2.015

9 0.417 0.456 0.4365 7.184

10 1.938 1.909 1.9235 -5.682

11 0.712 0.619 0.6655 3.515

12 0.853 0.821 0.837 1.543

13 1.031 1.017 1.024 -0.208

14 1.735 1.769 1.752 -4.872

15 0.651 0.633 0.642 3.843

16 1.696 1.686 1.691 -4.563

17 0.546 0.582 0.564 4.964

18 1.275 1.24 1.2575 -1.991
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Figure 5. Main effect plots for S/N ratios of the mean porosity (%).

Figure 4. Main effect plots for the mean porosity (%).

Table 7. Mean value of porosity content and S/N ratio at different levels.

Factors

Level 1 Level 2 Level 3

Porosity (%) S/N ratio Porosity (%) S/N ratio Porosity (%) S/N ratio

A 0.788 2.739 1.15 -0.383 – –

B 1.017 0.576 0.939 1.367 0.952 1.59

C 0.56 5.098 0.853 1.766 1.494 -3.329

D 0.983 1.389 0.936 1.546 0.988 0.598

E 1.044 0.532 0.967 1.019 0.896 1.982

The mean values of the quality characteristic at A(L1) & A(L2) are �A L1ð Þ ¼ AðL1Þ
18

& �A L2ð Þ ¼ A L2ð Þ
18
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ratio value (table 8). Hence, the individual factors B

(particle size in lm) has no significant effect on the

porosity content but its interaction with factor A (stirring

intensity in rpm) and factor C (reinforcement fraction in

wt%) has significant effect on the porosity content. This

indicates that factor B cannot be pooled. Moreover, inter-

action AxC is insignificant due to its F test statistic being

less than the critical F ratio value. This indicates that the

interaction of parameters A and C does not have an impact

on the output response characteristics. However, factor A

and C are of significant level.

3.1 Pooling

If the statistic F ratio to the corresponding parameter is less

than tabulated F ratio (table 8) at the given confidence

interval (95%), the parameter is insignificant and pooled the

parameter [22]. The sum of square of pooled parameter in

ANOVA calculation is added on the error sum of squares.

In the present study, the interaction AxC is insignificant and

pooled from the ANOVA calculation. The required

ANOVA terms are advanced and presented in table 9.

SSe pooledð Þ ¼ SSe þ SSAxC

fe ¼ fe þ fA

Ve pooledð Þ ¼ SSe pooledð Þ=fe polledð Þ
Where Ve is the error of variance, fe and fA degree of

freedom due to error and parameter A, respectively.

The percent contribution (P%) of individual significant

factor and/or interaction which is differed, is the part of the

total deviation predicted in an experiment. The P% repre-

sents the relative power of a parameter and/or respective

parameter’s interactions to reduce the variation. The total

variation could be reduced, if the levels of parameter/in-

teraction are controlled precisely. The deviation due to a

parameter/interaction has some value due to error and is

represented by, SS0A = SSA - (Ve 9 vA) if parameter A is

significant.

Similarly, pure sum of squares for other significant

parameters/interactions is determined. The total sum of

square will remains same (SS’e) after the subtracted amount

of sum of squares that added to the error sum of squares.

SS0e ¼ SSe þ me � mAð Þ
Percentage contribution due to parameter A (PA%)-

= (SS0A/SST) x 100. Similarly percentage contribution for

parameter B, C, D, and E are calculated. The expected sums

of squares (SS0) for each parameter is calculated by using

P% (table 9).

3.2 Optimization analysis of levels of their
corresponding controlled parameters

Once the experiments at their defined levels are performed

and the optimal value within the experiment is predicted.

Here, two possibilities exist: a) prescribed combination of

parameters level is identical to one of those in the experi-

ment and b) prescribed combination of parameters level is

not included in the experiment.

In the present study, the second condition exists and

estimation of mean for porosity content is achieved by

following equation 4.

l ¼ Tþ A1 � Tð Þ þ B3 � Tð Þ þ C1 � Tð Þ
þ D1 � Tð Þ þ E3 � Tð Þ ð4Þ

Where, T is the mean value of the porosity content at dif-

ferent levels.

The above equation 4 is not good when the additivity of

experimental observation is in 0 and 1 i.e., in percentage

Table 8. ANOVA for mean porosity (%) at 95% confidence

level.

Source SS DF Variance F ratio

A 1.185 1 1.185 131.77

B 0.042 2 0.021 2.33

AXB 0.082 2 0.041 4.51

C 5.474 2 2.737 304.43

AXC 0.00067 2 0.00033 0.04

BXC 0.424 2 0.212 23.59

D 0.02 2 0.01 1.08

E 0.132 2 0.066 7.36

Error 0.18 20 0.009

Total 7.539 35

Critical values of F ratio of factor A is 4.35 at (1, 20) & 3.49 at (2, 20) for

factors B to E at 95% confidence level.

SS: sum of squares, DF: degree of freedom, V: Variance.

Table 9. Pooled ANOVA table of mean porosity (%).

Source SS DF Variance F ratio SS’ P (%)

A 1.185 1 1.185 144.41 1.177 15.61

B 0.042 2 0.021 2.56 0.026 0.34

AXB 0.082 2 0.041 4.94 0.065 0.86

C 5.474 2 2.737 333.63 5.458 72.39

AXC Pooled 2 Pooled 1.38 Pooled Pooled

BXC 0.424 2 0.212 25.85 0.408 5.41

D 0.02 2 0.01 1.19 – –

E 0.132 2 0.066 8.06 0.116 1.53

Error 0.18 22 0.0082

Total 7.539 35

Critical values of F ratio of factor A is 4.35 at (1, 20) & 3.49 at (2, 20) for

factors B to E at 95% confidence interval.

SS: sum of squares, SS’; pure sum of error, DF: degree of freedom, V:

Variance, P: percentage contribution

Where, SS’A = SSA - (Ve * vA), similarly for SS’B, SS’C, SS’D, P

(%) = (SS’A/SST)*100
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such as percent yield, percent loss or defect type output.

This type of problem may lead to bad model’s additive

since the value being closer to 0 or 1. For this type of

conditions the estimation of mean for the output response

characteristic is determined through omega transformation

[23, 24]. The following steps are involved for estimating

the mean through omega conversion and presented in

table 10.

1. Convert data percent values to db values using the

omega tables or formula, X dbð Þ ¼ 10log p
1�p

h i
.

Where, p = fraction percentage value (0\ p\ 1)

2. Use equation (4) to estimate the mean with substituted

omega values.

3. Convert the obtained db value back to the percent value

using the omega tables or formula

The omega transformation converts fractions between 0

and 1 to values between minus infinity and plus infinity.

This transformation is most useful because percentage

values are very small in the present investigation. In the

present study, the porosity percentage is converted in db

through omega transformation is represented in table 10.

The mean for a selected trial condition for parameters at A1,

B3, C1, D2, and E3 is 0.4% (-23.982 db).

3.3 Confidence intervals

The optimum values of porosity (%) at the selected levels

of significant parameters ((A1, B3, C1, D2, and E3) through

estimation mean (l) is predicted (table 10). The estimate of

the mean (l) is the average of the results determined from

the experiment run condition. Statistically, this gives a 50%

chance of the true average being less or greater than mean

(l). The confidence level is the minimum and maximum

value between which the true average should fall at some

stated level. Hence, the expected value of true average

should fall within the confidence interval. There are two

types of confidence intervals (CICE and CIPOP) that are

proposed by Taguchi for estimating the mean of optimal

run conditions [23].

CICE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fa 1; feð ÞVe

1

geff
þ 1

R

" #vuut ð5Þ

CIPOP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fa 1; feð ÞVe

1

geff

" #vuut ð6Þ

From tables 7 and 8, the CI is calculated from equations

(5) and (6) as given under

Figure 6. Normality plot of experimental data (mean porosity—%).

Figure 7. Residual Plot of the experimental observed data.
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a—risk level = 0.05,

Ve—error of variance = 0.0082

geff—effective number of replication =
N

1þ total DF associated with items
used in estimation of mean

� �
fe—degrees of freedom for the error = 22

R—sample size for confirmation experiments = 2

N—total number of experimentation performed = 36

Fa—F0.05 (1, 22) = 4.30 (tabulated)

Predicted optimal range (for a confirmation runs of two

experiments) at 95% confidence interval is:

Mean (l)—CICE\ l\Mean (l) ? CICE
l� CICEj j\l\ lþ CICEj j
0.234\ 0.4\ 0.566

The 95% confirmation interval of the predicted optimum

of the porosity content value is

l� CIPOPj j\l\ lþ CIPOPj j
0.301\ 0.4\ 0.499.

3.4 Confirmation experiments

Confirmation experiments were used to verify that the

response value through experimentation at defined optimal

condition, predicted through estimation of mean is within

the range described by the confirmation test. The confirm-

ing experiment defined for experiments at optimal condi-

tions is highly recommended to verify the experimental

results. If the average response characteristics from con-

firmation experiments are in the range of the confidence

interval then the parameters and their corresponding levels

predicted in obtaining the response are precisely selected.

Moreover, if the average response characteristic from

confirmation experiment is beyond the range of the confi-

dence interval then the controlled parameters and their

corresponding levels to control the output response value

for a desired value are doubtful and it requires further

experimentation [24]. Six confirmation experiments at

defined optimal conditions were conducted as shown in

table 11. The average output response characteristic

(porosity content) in each experiment condition was found

to be 0.512% which is within the limits of predicted value.

Therefore, the selected process parameters and their cor-

responding levels are significant enough to obtain the

desired response.

4. Conclusions

The hazardous waste (BR) is successfully utilized as rein-

forcing material with Al6063 alloy in development of

robust particulate metal matrix composite (PMMC) through

advanced stir cast process. The advanced stir cast process

having the novelty in the present study. A bottom pouring

arrangement is employed to pour the cast composite

through bottom that restricts the dross and oxides at metal

surface, from being a part of the cast. Moreover, the

porosity content is also minimized by selecting the optimal

settings at their corresponding process parameters through

Taguchi analysis of cast PMMC. It also increases robust-

ness of the advanced stir casting route. Before the imple-

mentation of Taguchi methodology, the process parameters

and their levels were more arbitrary and it was difficult to

select to appropriate level. Hence the defects like high

porosity and void formation in cast composite had prob-

lems. Taguchi analysis yielded optimized process parame-

ters, resulting in robust cast product. Through this analysis

it can be observed that the maximum and minimum

porosity content was observed to be 1.92% and 0.4%,

respectively that was the worst and best condition for the

cast composite. Hence, L18 mixed design approach gives

the best suitable condition in the development of Al6063/

Table 10. Average values of various responses at optimal level and respective omega transformation value (db).

Parameter Optimal Level Average porosity (%) Db

Stirring intensity (rpm) A1 0.788 -21.00

Particle size (lm) B3 0.952 -20.172

Particle percentage (%) C1 0.56 -22.494

Pouring temperature (�C) D2 0.936 -20.246

Pr heat temperature (�C) E3 0.896 -20.438

X dbð Þ ¼ 10log p
1�p

h i
= 10 * log 0:00788

1�0:00788

� �
, similarly rest of the response characteristics

Overall mean, T = 0.9695% = - 20.092 (from Table D.5 (Ross, 1996))

Table 11. Confirmation run for validate the results.

Confirmation experiments at optimal Parameters (A1,

B3, C1, D2, E3)

Porosity

(%)

1 0.543

2 0.481

3 0.557

4 0.501

5 0.511

6 0.481

Average 0.512

  200 Page 10 of 12 Sådhanå          (2020) 45:200 



BR composite. The same is also confirmed through con-

firmation experiments.

From the present investigation, it can be reported that

the output response characteristic can be improved by

Taguchi analysis at the lowest possible cost. Moreover, to

overcome from the limitation of the Taguchi, ANOVA

methodology is adopted to predict the interaction and

significant process parameter, and major contribution of

the individual process parameter in the present investi-

gation. Through ANOVA analysis, the optimized process

parameters and their levels are with stirring intensity—

350 rpm, particle size—80 lm, particle percentage—2

wt%, pouring temperature—730 �C, preheat tempera-

ture—450 �C for the output response characteristic i.e.,

porosity content. The experimentation also reveals that the

every process parameter’s of advanced stir cast process is

responsible in variation in response characteristics and can

be improved without additional cost.

List of symbols
BR Bauxite residue

�C Temperature in Celsius

USA United state of America

PMMC Particulate metal Matrix Composite

MMCs Metal Matrix Composite

Wm Weight fraction of base matrix

qm Density of base matrix

Wr Weight fraction of reinforcement

qr Density of the reinforcement

qc Density of the developed composite

rpm Revolution per minute

m Total degree of freedom

mavl Available total degree of freedom

S/N Signal to noise ratio

S/NLB Signal to noise ratio lower is the better

db Decibels

SST Total Sum of Square

SSA Sum of square of parameter A

SSe Sum of square of error

Ve Total degree of freedom due to error

VT Total degree of freedom

VA Total degree of freedom due to parameter A

l Mean

p Fraction percentage

CICE Confidence of interval due to confirmation of

experiment

CIPOP Confidence of interval due to population
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