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Abstract. In a cloud computing environment, the Distributed Denial of Service (DDoS) attack is considered

as the crucial issue that needs to be addressed in ensuring the availability of resources that emerge due to the

compromisation of hosts. The process of detecting and preventing DDoS attacks is determined to be predom-

inant when the potential benefits of decoupling data plane from the control plane are facilitated through the

Software Defined Networking (SDN) in the cloud environment. The incorporation of SDN in DDoS mitigation

also enhances the probability of investigating the data traffic flow using the reactive process of updating

forwarding rules, analyzing the network with a global view and centralized control in monitoring for better

DDoS mitigation enforcement. In this paper, a Convolution Recursively Enhanced Self Organizing Map and

Software Defined Networking-based Mitigation Scheme (CRESOM-SDNMS) is proposed for ensuring the

better rate of detection during the process of preventing DDoS attacks in clouds. This proposed CRESOM-

SDNMS facilitates a predominant option in resolving the issue of vector quantization with enhanced topology

preservation and the superior initialization mechanism during the process of SOM-based categorization of

flooded data traffic flows into genuine and malicious. The simulation experiments and results of the proposed

CRESOM-SDNMS confirmed a superior classification accuracy of around 21% when compared to the existing

systems with minimized False Positive rate of 19% compared to the benchmarked DDoS mitigation schemes of

the literature.

Keywords. Software Defined Networking; Convolution Recursively Enhanced Self Organizing Map

(CRESOM); DDoS attacks; learning rate.

1. Introduction

In a cloud computing environment, Distributed Denial of

Service attack (DDoS) is determined to be the real threat

since they are significant in causing maximum disruption

that hurdles the availability of the cloud resources [1].

These DDoS attacks are launched in the cloud environment

for unintentional and intentional disruption, political and

financial gains. The DDoS attack paralyses the cloud ser-

vices by flooding maximum amount of packets to the ser-

vers and links with malicious traffic [2]. This DDoS attack

imposes complete service denial and service degradation

resulting in maximum losses in the cloud computing

environment. The emergence and evolution of Software

Defined Networking in the recent decade has widened the

option of encountering the DDoS attack in the cloud

environment [3]. This possibility in defeating the DDoS

attack is possible in the SDN due to its significance in the

dynamic enhancement of rules, centralized point of moni-

toring and global perspective of investigation [4]. SDN is

determined as the indispensable entity for cloud and service

providers since they have facilitated the possibility of

making the network programmable. Further, the storage,

bandwidth and computational power have increased con-

siderably as the devices in the applications and data center

have continuously risen in its number [5]. This infrastruc-

ture has to be maintained, managed and updated in order to

achieve the better classification of normal flow from the

malicious flow of the data traffic. Thus, the cost and com-

plexity are maximum for maintaining the classical data

center framework.

Further, SDN-based machine learning mechanisms using

Self Organizing Maps (SOM) were considered to be

excellent in appropriate detection and prevention of DDoS

attacks in the cloud by investigating the data traffic flow in

a reliable manner [6]. This investigation of data traffic

using SOM focuses on the process of transforming and

visualizing the high dimensional data into a two-*For correspondence
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dimensional grid [7]. The SOM consists of neuron collec-

tions that systematically adapt the input through the process

of competitive learning in order to create reliable and

ordered prototypes for facilitating better categorization of

data traffic [8]. The establishment of the created and

ordered prototyping characteristics in SOM is mainly used

for focusing on the topology preservation of the mapped

input data that seems to be highly suitable for cluster

analysis [9]. A number of variants of SOM-based DDoS

attack mitigation mechanisms were proposed in the litera-

ture for enhancing the degree of quantization error such that

significant classification accuracy is determined during the

process of prevention [10]. However, the rate of learning

and topology preservation characteristics remains the major

issue that needs to be handled for better discrimination of

flows during the process of preventing DDoS attacks in the

cloud environment. Thus, a predominant SOM-based DDoS

attack mitigation mechanisms are essential for confirming

the learning rate and topology preservation characteristics

is an excellent way during the process of preventing DDoS

attacks in the cloud environment.

In this paper, a Convolution Recursively Enhanced Self

Organizing Map and Software Defined Networking-based

Mitigation Scheme (CRESOM-SDNMS) is proposed for

defeating DDoS attacks in the cloud computing environ-

ment. This proposed CRESOM-SDNMS utilizes the bene-

fits of merging and splitting in enhancing the initialization

process such that high-density areas of the input space are

detected in a reliable and reactive manner. This detection of

high- density areas by the proposed CRESOM-SDNMS

aids in the potential generation of neurons that results in the

new topology in order to limit the adaptation rate of neu-

rons is an excellent way. This proposed CRESOM-SDNMS

utilizes the newly created topology for facilitating superior

local quantization error compared to the classical SOM-

based SDN mitigation mechanisms contributed to the lit-

erature. The simulation experiments for the proposed

CRESOM-SDNMS have been conducted for determining

its predominance under Classification Accuracy, True

Positive rate, True Negative rate and False Positive rate

evaluated under different data traffic flow rates.

The forthcoming sections of this paper are structured as

follows. Section 2 details the comprehensive review on the

most recent existing SDN-based DDoS mitigation mecha-

nisms in the cloud environment contributed over the recent

years. Section 3 details the implementation steps of the

proposed CRESOM-SDNMS with its merits and phenom-

enal improvement in the process of preventing DDoS

attacks through the benefits of CRESOM through SDN.

Section 4 highlights the results and investigations of the

proposed CRESOM-SDNMS for quantifying its predomi-

nance in terms of Classification Accuracy, Precision, Recall

and False Positive rate determined under varying intensities

of data traffic rates. In section 5 conclusions are provided

with major contributions of the proposed CRESOM-

SDNMS with the future scope of enhancement.

2. Related work

In this section, the most significant SDN-based DDoS

mitigation schemes contributed to a cloud environment

over recent years are detailed with their pros and cons.

Initially, a novel mitigation mechanism using a filtering

tree is proposed for preventing the HTTP and XML-based

DDoS attacks on the cloud computing environment [11].

This filtering tree-based DDoS attack prevention

scheme utilized five levels of filters for reducing the

impacts of the HTTP and XML-based DDoS attacks. In this

filtering tree-based DDoS attack prevention approach, the

suspicious packets are analyzed using a puzzle resolver for

handling the issues that emerge due to the generated SOAP

header-based malicious data packets. This filtering tree

scheme first identifies the malicious message initiated IP

addresses for sending the puzzle and the sent puzzles are

solved for determining the genuine client. An intelligent

DDoS mitigation scheme was proposed for combining the

network as the portion of the protective framework with the

benefits of network traffic filtering, shuffling targets with

BGP protocols [12]. This intelligent DDoS mitigation

approach explores the various possibilities of flow features

that could be phenomenally utilized for detection of mali-

cious data traffic from the monitored data traffic. The

classification accuracy of this intelligent DDoS mitigation

scheme was proved to be approximately 92%. A high

programmable potential-based network monitoring

scheme was proposed for encountering and defeating the

DDoS attacks in the cloud space by eliminating the limi-

tations of the existing mitigation architecture [13]. This

high programmable potential-based network monitoring

scheme is capable of facilitating a superior attack detection

process that enables adaptive control organization in order

to permit rapid and reliable detection of TCP-based attack

in the clouds. The results of this high programmable

potential-based network monitoring scheme were estimated

to be effective and efficient in addressing the security issues

introduced by the advent of the network paradigm consid-

ered for DDoS detection and prevention.

Then, an OpenFlow-based SDN framework for DDoS

attack mitigation was contributed for preventing the issues

that emerge due to the emergence of a smooth packet

replaying attack [14]. This OpenFlow-based SDN frame-

work controls the intensity of the DDoS attack by utilizing

the mutual benefits of data plane and control plane used

for investigation. This OpenFlow-based SDN framework

is also significant in managing and monitoring the data

traffic flows using the advantages of SDN in clouds.

A Rapid and accurate SDN-based DDoS attack mitigation

scheme was proposed for resolving the issues introduced

by the flooding based DDoS attacks using the process of

entropy variation [15]. This entropy variation factor uti-

lized in this accurate SDN-based DDoS attack mitigation

scheme was determined to be capable of the exact and
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distinct categorization of normal and malicious data traf-

fic. The False Positive rate of this entropy variation factor-

based DDoS attack mitigation scheme was determined to

be reduced by 12% compared to the mitigation frame-

works that focused on the OpenFlow-based monitoring

process. A novel DDoS detection framework was pro-

posed for preventing compromised clients from accessing

the HAP proxy server with the aid of the internet [16].

This detection scheme accepts the packets for monitoring

in the first step until the number of connections does not

exceed a threshold degree. In the second step, the variable

of trust that monotonically increases depending upon the

malicious connections is updated in a reactive manner

such that the load and scalability are sustained to a

maximum level.

A correlation-based DDoS attack mitigation approach

was contributed for estimating the association between the

arrival rate and inter-arrival time of the cloud clients that

are compromised through intentional attacks [17]. The

ability of the attacker in exhausting buffer size and band-

width of the attacked server is explored depending on the

unsupervised learning process of self-organizing maps used

in the detection. This correlation-based DDoS attack miti-

gation approach was determined to be capable of investi-

gating the distinct features of the clusters considered for

prevention. The benefits of normal probability and mathe-

matical correlation are integrated together for investigating

the characteristics of data flow counts such that predomi-

nant categorization is facilitated. A Multi-Criteria Security

Architecture incorporated SDN-based Mitigation

Scheme (MCSA-SDNMS) was contributed for investigat-

ing real traffic based on DDoS thresholds and DDoS indi-

cators [18]. This MCSA-SDNMS based mitigation

approach utilized an Openflow-based mitigation framework

for rapid mitigation such that the traffic volume sends

through the interface is phenomenally reduced during its

transmission between the control and data plane of SDN.

This MCSA-SDNMS based mitigation approach employed

the Fuzzy Logic properties for effective detection of DDoS

attacks in order to reduce the False Positive rate to a lower

degree of 5%. This MCSA-SDNMS based mitigation

approach was also determined to be capable of detecting

and preventing the intensity to the maximum extent of 97%

with reduced attack time. The authors also proposed a

Fuzzy Self Organizing Maps enforced SDN-based mitiga-

tion scheme (FSOM-SDNMS) for effective mitigation of

DDoS attacks in the cloud [19]. This Fuzzy-based SOM

detection mechanism is capable of exploring the possible

dimensions of the data traffic flow features in a predomi-

nant manner. The Classification Accuracy, True Positive

rate, True Negative rate of the FSOM-SDNMS approach

was estimated to be improved by 19%, 15%, and 23%

compared to the MCSA-SDNMS based mitigation

approach. Finally, an Improved Self Organizing Maps

enforced SDN-based mitigation scheme (ISOM-SDNMS)

was contributed for reliable detection of DDoS attacks in

the cloud [20]. This Improved Self Organizing Maps uti-

lized the features of a recursive property for the predomi-

nant determination of malicious data traffic under the

exhaustion of cloud resources. The Classification Accuracy,

True Positive rate, True Negative rate of the FSOM-

SDNMS approach was also estimated to be improved by

23%, 18% and 20% superior to the existing MCSA-

SDNMS approach.

The aforementioned review on the recent SDN-based

DDoS mitigation schemes contributed to a cloud environ-

ment innovated the possibility of devising a Convolution

Recursively Enhanced Self Organizing Map and Software

Defined Networking-based Mitigation Scheme for effective

Classification Accuracy and reduced False Positive rate.

3. Proposed CRESOM-SDNMS

In this proposed CRESOM-SDNMS, the investigation of

data traffic flow starts from the extraction of data flow

parameters by the SDN for dynamic updating of rules that

aids in the superior detection process. The benefits of the

Convolution Recursively Enhanced Self Organizing Map

are utilized by the SDN for facilitating excellent analysis of

data flow parameters extracted from the data traffic. This

process of investigating the data traffic flow is initiated with

the collection of ‘k’ input data vectors VIFP ¼ ½I1; I2;
. . .; Im�, where Ii 2 Rm with 1� i�m, respectively. This

input vector VIFP ¼ ½I1; I2; . . .; Im� corresponds to the pos-

sible number of data flow parameters considered for

investigation. In this investigative process, the SOM is

utilized for facilitating an unsupervised learning that con-

sists of two-dimensional neurons associated with specific

weights as defined by Kohenen [21]. The assigned weights

/ ¼ ½w1;w2; . . .;wm� for each neuron n ¼ 1; . . .; f in the

SOM network defines the set of mapped data according to

Equation (1)

SMDðnÞ ¼ fI 2 VIFP : dðI;wnÞ\dðI;wlÞg ð1Þ
Under l ¼ 1; . . .; f with l 6¼ n and Euclidean distance

dðI;GÞ computed [26–28] through Equation (2).

dðI;GÞ ¼ ðI � GÞj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

I2 � G2

 !2
vuut ð2Þ

where I;G 2 Rm.

Then, each data point Ii 2 Rm at a time is given as input

to the network in order to compare it with all the possible

weight vectors for selecting the nearest weight as the

superior matching unit for the considered ith data point.

This estimated data point is mapped on to the superior

matching neuron SMDðnÞ ¼ SMDðnÞ [ Ii with the objective to

solve the problem of vector quantization defined through

Equation (3).
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MinimizeQ ¼ 1

m

Xnm
i¼1

Ii � wSMUk k ð3Þ

where wSMU is the weight corresponding to the superior

matching unit for the considered ith data point. Further, the

collection of neighborhood weights Nb ¼ fwl :
cðb:; lÞ� r; l 6¼ cg around the superior matching unit is

updated using the estimated distance existing between the

superior matching unit and the closest neuron in the two-

dimensional coordinates represented in the topology of the

network with ‘r’ as the pre-assigned radius. Furthermore,

cðb; lÞ 2 Nb and the value of cðb; lÞ lies between 0 and r.

In the SOM, a single data point is chosen in every iter-

ation and its corresponding nearest neuron is determined

using Equation (4) with the collection of neighboring

neurons (wn) updated based on Equation (5) with prede-

fined weight vectors, radius, and numbers of maximum

iterations with the dimensions of the network.

b :¼ argmin
n¼1;...;f

Ii � wj

�� �� ð4Þ

and

wn ¼ wn þ jðsÞbðsÞðIi � wnÞ ð5Þ
where bðsÞ and jðsÞ are the learning rate and neighborhood

function at each iteration number s. This process of

updating the collection of neighboring neurons is facilitated

until all the possible data points are presented as input to

the network. The neighborhood function jðsÞ plays a key

role in the utilization of the SOM since it is the exponential

function that gets decremented depending on the value of

the iteration number s. Similarly, the learning rate bðsÞ also
influences the performance of the SOM in a linear manner

since it is the decreasing linear function of s. In addition,

the process of initialization and topology preservation plays

a major role in ensuring optimal map convergence to a

maximum degree [22].

In this proposed CRESOM-SDNMS approach, the

mechanism of splitting and merging is included in order to

integrate them for facilitating optimal algorithm design

during the initialization process of neurons. In this context,

the cluster centers to ‘m’ number of clusters represented by

VIFP ¼ ½C1;C2; . . .;Cm� is computed for solving the prob-

lem described in Equation (6)

Minimize fsucc ¼
Xm
i¼1

Xm
I2CI

ðIi � CiÞk k
2

ð6Þ

Further, two sets are determined for estimating and cat-

egorizing the density of data points around the center point

Ci through Equations (7) and (8), respectively.

a1xðeÞ ¼ fI 2 CijdðI;CiÞ� eg ð7Þ
and

a1yðeÞ ¼ fI 2 Cije\dðI;CiÞ� rig ð8Þ
where the value of ri being the maximum distance esti-

mated between the considered data point of each cluster

with its associated cluster center point represented in

Equation (9)

ri ¼ maxfdðI;CiÞjI 2 Cig ð9Þ
Then the two clusters CX and Cy are considered to be

potentially separated when the value of dðCx;CyÞ is greater
than (rx þ ry). It is also obvious that each and every ‘mth’

number of clusters possess a value of ‘e’ that range between

0 and ri by meeting the constraint a1xðeÞ
�� ��[ a1yðeÞ

��� ���. Thus,
the smaller value of ‘e’ ensures and enforces a maximum

number of data points to be distributed around the cluster

center during the splitting process. Furthermore, the role of

‘e’ must be investigated for accurate identification of

cluster portions in which most of the data points correlate

and reside. The maximum number of points (Lic) that is

residing within the radius ‘ei ¼ lri’ derived from the col-

lection of ‘m’ clusters represented through w ¼
½D1;D2; . . .;Dm� and its cluster centers VIFP ¼
½C1;C2; . . .;Cm� is determined based on Equation (10).

Lic ¼ aicðeiÞ
�� �� ð10Þ

In addition, the identification of data point residing in

various portions of the cluster ‘Ci’ necessitates the trans-

formation such that the data point ðNv ¼ d1; d2; . . .; dmÞ 2
Rm becomes the cluster center using Equation (11)

It ¼ It�1 � Ct
i þ d with 1� t� n ð11Þ

where the value of d varying between 0 and 0.1 which

needs to be significantly lower for confirming a potential

splitting process. After this transformation process, the

angle hi;I defined between the vectors I 2 Ci and Nv is

computed based on Equation (12)

hi;I ¼ arccos
ðI;NvÞ

�

d

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m Ij

���� ���
r

0
BB@

1
CCA ¼ arccos

Pm
t¼1 I

tffiffiffiffiffiffiffiffiffiffiffiffiffi
m Ij

���� ���
r

0
BB@

1
CCA ð12Þ

where (I, Nv

�
) is the term describing the inner product

estimated between two vectors I and Nv

�
respectively. Now,

the first set of Ci named a1xðeiÞ is again partitioned based on

an angle hi;I into two sets as represented in Equations (13)

and (14), respectively.

a1xðuÞðeiÞ ¼ fI 2 Cijei\dðI;CiÞ; 0� hi;I � p=2g ð13Þ
and

a1xðdÞðeiÞ ¼ fI 2 Cijei\dðI;CiÞ; p=2� hi;I � pg ð14Þ
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The cardinalities of the aforementioned sets are deter-

mined through Liu ¼ a1xðuÞðeiÞ
��� ��� and Lid ¼ a1xðdÞðeiÞ

��� ��� respec-
tively. Moreover, the partitioned sets a1cðeiÞ, a1xðuÞðeiÞ and

a1xðdÞðeiÞ need to satisfy the conditions given in Equa-

tions (15), (16) and (17), respectively.

Lic þ Liu þ Lid ¼ Cij j ð15Þ

aicðeiÞ [ aixðuÞðeiÞ [ aixðdÞ ¼ Ci ð16Þ
and

ðaicðeiÞ \ aixðuÞðeiÞÞ ¼ ðaixðuÞðeiÞ \ aisðdÞðeiÞÞ
¼ ðaicðeiÞ \ aixðdÞðeiÞÞ ¼ / ð17Þ

Hence, the process of splitting is applied to the cluster Ci

based on the values of Lic, L
i
u and Lid.

At this juncture, the distribution of data points around the

cluster center is determined to be dense when it satisfies the

condition highlighted in Equation (18)

Lic �max½Liu; Lid� ð18Þ
In contrast, the characteristics of the cluster remain

unchanged when it satisfies the condition highlighted in

Equation (19)

Lic\max½Liu; Lid� ð19Þ
Thus, this cluster needs to be partitioned into two cluster

subsets as presented in Equations (20) and (21),

respectively.

a1ðcuÞðeiÞ ¼ fI 2 aicðeiÞjdðI;CiÞ; � ei; 0� hi;I � p=2g ð20Þ
and

a1ðcdÞðeiÞ ¼ fI 2 aicðeiÞjdðI;CiÞ� ei; p=2� hi;I � pg ð21Þ
Furthermore, the original cluster Ci is divided into two

new clusters CnewðiÞ and Cnew1ðiÞ depending on Equa-

tions (22) and (23).

CnewðiÞ ¼ faixðuÞðeiÞ [ aiðcuÞðeiÞg ð22Þ
and

Cnew1ðiÞ ¼ faixðdÞðeiÞ [ aiðcdÞðeiÞg ð23Þ
With centers defined in Equations (24) and (25)

respectively.

cnewðiÞ ¼ 1

CnewðiÞ
�� �� X

I2CnewðiÞi

I ð24Þ

and

cnew1ðiÞ ¼ 1

Cnew1ðiÞ
�� �� X

I2C
i
new1ðiÞ

I ð25Þ

The clusters determined after the process of splitting may

not be well separated and hence the clusters that are not

well separated are merged into the new cluster. If Cqð1Þ and
Cqð2Þ are two clusters that are not well separated, then they

are merged based on Equation (26)

C�
new ¼ Cqð1Þ [ Cqð2Þ ð26Þ

With center c�new ¼ 1

C�
newj j
P

I2C�
new

I satisfying the constraint

dðCqð1Þ;Cqð2ÞÞ � ðrqð1Þ þ rqð2ÞÞ\0.

In this proposed CRESOM-SDNMS approach, the ran-

domly initialized weights of SOM are modified to prevent

the limitation of slower convergence during the process of

initialization. The next predominant issue focused on this

proposed CRESOM-SDNMS approach is its effectiveness

in preserving the topology of the network [23]. In order to

preserve the topology of the network, an integer number is

defined based on Equation (27)

ri
� ¼ dðwa;wbÞ

ðea þ ebÞ
� �

ð27Þ

Thus, the characteristics of CRESOM is enhanced based

on splitting and merging-based initializing process and

defined integer oriented topology preservation approach.

This improvement also has an impact on the learning rate

and neighborhood function bðsÞ and jðsÞ as defined in

Equations (28) and (29), respectively.

bðsÞ ¼ k
Tp � s

s

� �
ð28Þ

and

jðsÞ ¼ exp �
r2
ið0Þ

2bðsÞ2
 !

ð29Þ

Once the learning rate and neighborhood function are

enhanced, the convoluted structure of CRESOM is applied

for recognizing the malicious flow from the total data traffic

flows in the cloud computing environment. This convoluted

structure of CRESOM aided in minimizing the function

defined in Equation (6) below a threshold as defined in

Equation (30)

Minimize fsucc ¼
Xm
i¼1

Xm
I2CI

ðIi � CiÞk k
2

\DTFTHres ð30Þ

This DTFTHres parameter is investigated with the values

between 0 and 1 in increments of 0.1 in order to

investigate its potential in enforcing the convoluted

structure of CRESOM, which concentrates on the reliable

detection and prevention process. Hence, the data traffic
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flow and its parameters monitored for detecting malicious

flow from normal flows are determined in an accurate

manner.

4. Simulation results and investigations

In this section, the importance of the proposed CRESOM-

SDNMS approach in the DDoS attack prevention in the

cloud network is analyzed based on test cases that are

distinctly devised with reliable and practical characteristics

of monitoring data traffic flow [24, 25]. The superior per-

formance of the proposed CRESOM-SDNMS approach

over the compared FSOM-SDNMS, ISOM-SDNMS and

MCS-SDNMS schemes are investigated by exploring the

five flow features of data traffic as defined in [19]. Similar

to the FSOM-SDNMS approach, the proposed CRESOM-

SDNMS approach investigates the aforementioned five

flow features of data traffic based on the utilization of a

flow collection module that is inherently present in the

NOX-based cloud data monitoring entity in the SDN. The

collected data traffic flow features are investigated through

the classification entity of the NOX-based cloud data

monitoring component in order to distinguish malicious

data traffic from the normal data traffic in the cloud envi-

ronment during the implementation of the proposed CRE-

SOM-SDNMS approach. Different types of normal and

malicious data traffic characteristics are combined for

ensuring potential training and testing process in the

detection of DDoS attacks in the clouds. The complete data

traffic generated and incorporated in the testing process

includes 10% of UDP packets, 10% of ICMP packets and

80% of TCP packets.

The Stacheldraht tool is utilized by the proposed CRE-

SOM-SDNMS approach to generate and explore the data

traffic essential for preventing DDoS attacks in the cloud

environment. For investigating the TCP SYN packets-based

flooding attack, 167,832 and 6431 flow count are utilized

for testing and training. Similarly, the investigation of UDP

packets-based flooding attack utilized 51,227 and 2913 flow

count on an average in the process of testing and training.

In addition, the ICMP flooding attack is investigated using

an average number of 61,564 and 5442 flow count in the

process of testing and training. In this experimental analysis

of the proposed CRESOM-SDNMS approach, nearly

117,600 flow counts are generated during the training

process out of which 51,000 flow counts and 60,000 count

flows are aggregated and explored for segregating mali-

cious data traffic from the normal data traffic flows.

Moreover, Table 1 presents the number of records in the

training and testing dataset for normal and attack traffic.

The experimental analysis of the proposed CRESOM-

SDNMS approach is conducted based on an improved Intel

Quad-Core Xeon processor with 16 GB memory potential

in order to facilitate a superior process of training and

testing during the enforcement of the implemented

approach.

Then, the confusion matrix is used for calculating pre-

cision, recall, and F-Measure. This confusion matrix CMAT

comprises of M �M matrix, where M represents the

number of classes. It highlights the predicted and actual

classes in such a manner that rows and columns are labeled

for actual and predicted classes related to all records con-

sidered for investigation. Further, the diagonal elements of

the matrix portray the True Positive (TP) related to each

class, the cumulative sum of the matrix elements in the row

except the diagonal element depicts the number of False

Positives (FP). The cumulative sum of the matrix elements

in the Column except the diagonal element depicts the

number of False Positives (FN) (Table 2).

Based on the aforementioned Confusion matrix, the

precision, recall, and F-measure with respect to each class

‘k’ is determined based on Equations (31), (32) and (33).

Pr
k
¼ TPk

TPk þ FPk

� 100 ð31Þ

Rek ¼ TPk

TPk þ FNk

� 100 ð32Þ

F-Measurek ¼ 2� Prk �Rek

Prk þRek
� 100 ð33Þ

The attacking source topology and the test bed used for

implementing the proposed CRESOM-SDNMS approach is

explained and highlighted in figures 1 and 2. Figure 1

portrays the complete attacker source topology utilized

during the implementation of the proposed CRESOM-

SDNMS approach. This utilized attacker source topology

consists of four attacker sources in which Attacker 1 uti-

lizes the legitimate IP for attack generation that floods an

abnormal number of packets into the cloud environment.

Attacker 2 is responsible for generating ICMP, TCP and

UDP-based malicious packets for enforcing flooding of

data packets in the clouds. Similarly, Attacker 3 generates

and introduces IP duplication and DNS spoofing packets

Table 1. Number of records in the training and test dataset for

normal and attack traffic.

Traffic type Training records Testing Records

Attack

Normal (N) 49,179 21,076

UDP (U) 2913 51,227

ICMP (I) 5442 61,564

TCP (T) 5442 167,832

TCP & UDP (TU) 4694 2011

UDP & ICMP (UI) 4437 1902

TCP & ICMP (TI) 4739 2031

All (A) 5615 2407
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into the cloud environment that increases the rate of data

forwarding load over the resources of the clouds. Attacker 4

injects the Botnet kind of malicious behavior in the cloud

environment.

Figure 2 highlights the topology of the test bed utilized

in the SDN-based cloud network that is considered in the

process of deploying the proposed CRESOM-SDNMS

approach in order to test its efficacy in detecting and pre-

venting DDoS attacks. This test bed topology comprises of

Virtual Firewall Router for integrating the SDN-based

cloud infrastructure with the internet. This Virtual Firewall

Router existing in the test bed has the potential in allowing

the operation of both HTTP and HTTPs protocols. Further,

two load balancers are used in the topology for facilitating

superior detection and prevention processes. In addition,

the two load balancers are incorporated into the application

server such that the implicit significance of the VMware is

significantly enhanced to the maximum level in the process

of mitigation DDoS attacks in the cloud environment.

Initially, the excellence of the proposed CRESOM-

SDNMS approach is compared with the existing FSOM-

SDNMS, ISOM-SDNMS and MCSA-SDNMS schemes

based on the percentage in Classification Accuracy under

varying percentages of False Positive rate in the signifi-

cance of increasing data traffic rates. Figure 3 highlights

the predominance of the proposed CRESOM-SDNMS

approach evaluated using Classification Accuracy under

100 Mbps of data traffic rate. The results of the proposed

CRESOM-SDNMS approach confirmed a superior classi-

fication of approximately 12–14%, 15–17% and 19–22%

superior to the benchmarked FSOM-SDNMS, ISOM-

SDNMS and MCSA-SDNMS schemes. Likewise, figure 4

depicts the superiority of the proposed CRESOM-SDNMS

approach to evaluate using Classification Accuracy under

Table 2. The confusion matrix for the eight class classification.

Prediction

Actual

N T U I TU TI UI A

N 99.972 0.981 0.398 0 0.199 0 0.283 0.208

T 0 98.507 0 0 1.492 0.049 0 0.208

U 0 0 99.425 0 4.177 0 1.525 0.332

I 0.009 0 0 100 0 3.939 3.47 0.789

TU 0 0.469 0.177 0 78.319 15.165 0 1.826

TI 0 0 0 0 12.183 76.465 0 5.259

UI 0.009 0 0 0 0 94.585 94.585 7.854

A 0.009 0.043 0 0 3.63 0.158 0.156 83.362

Figure 1. Proposed CRESOM-SDNMS-Attacker source topology for DDoS attack mitigation.
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200 Mbps of data traffic rate. The results of the proposed

CRESOM-SDNMS approach confirmed a superior classi-

fication accuracy rate of approximately 13–15%, 16–18%

and 20–24% superior to the baseline DDoS attack mitiga-

tion schemes contributed to the cloud environment in the

literature. Similarly, figure 5 explores the significance of

the proposed CRESOM-SDNMS approach through the

Classification Accuracy rate determined under 300 Mbps of

data traffic rate. The results of the proposed CRESOM-

SDNMS approach under 300 Mbps also ensured an

outsmarting Classification Accuracy rate of approximately

15–17%, 18–20% and 21–23% superior to the baseline

DDoS attack mitigation schemes of the literature.

Further, figures 6 and 7 highlight the performance of the

proposed CRESOM-SDNMS approach investigated using

Classification Accuracy under data traffic rates of 400

Mbps and 500 Mbps, respectively. The Classification

Accuracy of the proposed CRESOM-SDNMS approach

under 400 Mbps is nearly 7–9%, 11–14%, and 16–18%

compared to the existing benchmarked FSOM-SDNMS,

ISOM-SDNMS, and MCSA-SDNMS schemes. The Clas-

sification Accuracy of the proposed CRESOM-SDNMS

approach under 500 Mbps is also determined to be

approximately 6–8%, 10–12%, and 14–16% compared to

the existing benchmarked schemes considered for investi-

gation. This phenomenal improvement in the performance

of the proposed CRESOM-SDNMS approach investigated

using Classification Accuracy is mainly visualized due to

the novel initialization that prevents the limitations of

Figure 2. Test-bed topology utilized for implementing the

proposed CRESOM-SDNMS.
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Figure 3. Classification Accuracy-proposed CRESOM-

SDNMS-different False Positive rates (Data rate-100 Mbps).
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Figure 4. Classification Accuracy-proposed CRESOM-

SDNMS-different False Positive rates (Data rate-200 Mbps).
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SDNMS-different False Positive rates (Data rate-300 Mbps).
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slower convergence and topology preservation in the

network.

Furthermore, figures 8, 9 and 10 quantify the False

Positive Rate, Precision and Recall value evaluated for the

proposed CRESOM-SDNMS approach under the increas-

ing rate of data traffic. The False Positive rate of the pro-

posed CRESOM-SDNMS approach is reduced by 4–6%,

7–9% and 10–12% predominant to the existing bench-

marked FSOM-SDNMS, ISOM-SDNMS and MCSA-

SDNMS schemes. The minimized False Positive Rate of

the proposed CRESOM-SDNMS approach is mainly

facilitated due to the utilization of the convoluted charac-

teristics of CRESOM incorporated in the process of dis-

tinguishing malicious flow from the normal data flow in the

SDN-based cloud computing environment. The Precision of

the proposed CRESOM-SDNMS approach is identified to

be improved 8–10%, 12–14%, and 16–19% compared to

the benchmarked FSOM-SDNMS, ISOM-SDNMS and

MCSA-SDNMS schemes. The enhanced precision rate of
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Figure 6. Classification Accuracy-proposed CRESOM-

SDNMS-different False Positive rates (Data rate-400 Mbps).
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10 20 30 40 50 60 70 80 90 100
86

88

90

92

94

96

98

100

VARYING DATA RATES( in Mbps)

P
R

E
C

IS
IO

N
(in

%
)

PROPOSED CRESOM-SDNMS
FSOM-SDNMS
ISOM-SDNMS
MCSA-SDNMS
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the proposed CRESOM-SDNMS approach is mainly due to

the incorporation of the merging mechanism that integrates

the interrelated data points cluster into a single cluster for

preventing slower convergence in the initialization process.

In addition, the Recall value of the proposed CRESOM-

SDNMS approach was also concluded to be superior over a

margin of 10–12%, 14–16%, and 18–21% compared to the

benchmarked SDN-based DDoS attack mitigation schemes

contributed for improving security in the cloud computing

environment.

In addition, figures 11, 12 and 13 show the significance

of the proposed CRESOM-SDNMS evaluated using the

True Positive rate under the influence of increasing rates of

data traffic by varying the degree of False Positive intensity

as 10%, 20%, and 30%, respectively. The performance of

the proposed CRESOM-SDNMS investigated under False

Positive intensity of 10% confirmed that its improvement in

the True Positive rate of 9%, 7%, and 4% predominant to

the existing FSOM-SDNMS, ISOM-SDNMS and MCSA-

SDNMS approaches. Likewise, the performance of the

proposed CRESOM-SDNMS quantified under the False

Positive intensity of 20% confirmed its enhancement in the

True Positive rate of approximately 8%, 6% and 4%

excellent to the existing SDN-based DDoS attack mitiga-

tion schemes used for comparison. The performance of the

proposed CRESOM-SDNMS evaluated under the False

Positive intensity of 30% also confirmed the improvement

in the True Positive rate of nearly 7%, 5% and 3% excellent

to the benchmarked SDN-based DDoS attack mitigation

schemes of the literature. This enhancement possibility of

the proposed CRESOM-SDNMS is mainly due to the

incorporated splitting and merging-based initializing pro-

cess and defined integer oriented topology preservation

approach.

Finally, the evaluation of the proposed model is also

attained through two-class classification based on all cate-

gories of DDoS attacks as a comprehensive single attack

class in order to compare the potential with the existing

works. Table 3 presents the performance of the proposed

model using a 2-class classification.

The results presented in table 3, clearly proved that the

accuracy of the proposed scheme is 99.86% with F-Mea-

sure of 99.87% and 99.79% with respect to normal and

attack traffic classes determined from the confusion matrix.

Further, the accuracy of the FSOM-SDNMS scheme is

99.78% with F-Measure of 99.75% and 99.74% with

respect to normal and attack traffic classes determined from

the confusion matrix. The accuracy of the ISOM-SDNMS

scheme is 99.72% with F-Measure of 9.65% and 99.71%

with respect to normal and attack traffic classes determined

from the confusion matrix. In addition, the accuracy of the

MCSA-SDNMS scheme is 99.72% with F-Measure of

99.56% and 99.62% with respect to normal and attack

traffic classes determined from the confusion matrix.

The results from table 4, proved that the classification

time and training time of the proposed are comparatively

lower than the benchmarked FSOM-SDNMS, ISOM-

SDNMS and MCSA-SDNMS schemes.
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Figure 11. True Positive rate-proposed CRESOM-SDNMS eval-

uated under different data rates (False Positive rate-10%).
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Figure 12. True Positive rate-Proposed CRESOM-SDNMS

evaluated under different data rates (False Positive rate-20%).
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Figure 13. True Positive rate-Proposed CRESOM-SDNMS

evaluated under different data rates (False Positive rate-30%).

Table 3. The performance of the proposed model using 2-class

classification.

Prediction

Actual

Normal Attack

Normal 99.936 0.342

Attack 0.064 99.658
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5. Conclusions

The proposed CRESOM-SDNMS was presented as an

excellent DDoS attack mitigation mechanism for cloud

environments by incorporating the benefits of CRESOM in

SDN for effective discrimination of data traffic flows into

genuine and malicious. This proposed CRESOM-SDNMS

aided in a better initialization process through splitting and

merging methods for ensuring reduced local minimum in

the quantization error. This proposed CRESOM-SDNMS

utilized the convoluted structure of the recursively

enhanced SOM for an appropriate investigation of data

traffic flows through the capability of SDN. This proposed

CRESOM-SDNMS utilized dynamic updating rules and

investigation of data traffic for ensuring reliable detection

of the flooding category of DDoS attacks in the cloud. This

proposed CRESOM-SDNMS also incorporated a better

learning rate and initialization process of better catego-

rization of traffic flows. The results of the proposed CRE-

SOM-SDNMS approach confirmed an excellent

improvement in Classification Accuracy by an average of

21% under its investigation with increasing rates of data

traffic. The results have also proved that there is a signifi-

cant improvement of True Positive rate, True Negative rate,

Precision, and Recall value for the proposed system when

compared with the existing approaches. The False Positive

rate of the proposed CRESOM-SDNMS approach was

determined to be potentially reduced by 19% compared to

the benchmarked SDN-based DDoS attack mitigation

approaches considered for analysis. As the future advent of

this proposed approach, it is planned to formulate an inte-

grated SDN and Neighborhood function estimated Self

Organizing Maps-based DDoS attack mitigation mecha-

nism for facilitating better detection of malicious data

traffic flows.

List of symbols

VIFP ¼ ½I1; I2; . . .; Im� The input vector representing data

traffic flow

k Number of input vectors

wn Collection of neighboring neurons

/ ¼ ½w1;w2; . . .;wm� The weights assigned to each

neuron

SMDðnÞ Set of mapped data

dðI;GÞ Euclidean distance

Ii 2 Rm Individual data points

Nv

� Neighborhood vector points

hi;I Angle estimated between two

vectors I and Nv

�

(I, Nv

�
) Inner product estimated between

two vectors I and Nv

�

Q Vector quantization function

wSMU Weight associated with the superior

matching unit

Nb Neighborhood weights

r Predefined radius

bðsÞ Learning rate

jðsÞ Neighborhood function

s Iteration number

Ci Center points

DTFTHres Threshold data traffic flow

ri
� An integer defined for topology

preservation

m Number of clusters

Cqð1Þ Newly constructed first cluster

Cqð2Þ Newly constructed second cluster

rqð1Þ Radius of newly constructed first

cluster

rqð2Þ Radius of newly constructed second

cluster

c�new Mean center point of the newly

constructed clusters

Lic The cardinality of the set used for

partitioning

Liu The upper cardinality number of

the set used for partitioning

Lid The lower cardinality number of

the set used for partitioning

CnewðiÞ Center point of newly constructed

first cluster

Cnew1ðiÞ Center point of newly constructed

second cluster

a1xðeÞ First set used for estimating and

categorizing density of data points

a1yðeÞ Second set used for estimating and

categorizing density of data points

e Data points correlation parameter

fsucc Successive function of neurons
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