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Abstract. Continuum damage mechanics (CDM) model is commonly used for the prediction of ductile

fracture. For numerical simulation of ductile fracture in impact or high-temperature problems, the damage

growth law that incorporates the effect of high temperature is needed. Experimentally, it has been observed that

damage growth decreases with temperature. However, the damage growth law at high temperature is not easily

available in the literature. In the present work, a damage growth law at high temperature is proposed for steel,

based on the experimental measurement of damage carried out at IIT Kanpur.
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1. Introduction

In continuum damage mechanics (CDM) model, the void

density at a point is described by a continuum variable,

called damage. This variable is introduced in the constitu-

tive relation to include the material softening due to void

growth. Then, the theory of continuum thermodynamics is

used to derive the evolution law for damage growth (termed

as the damage growth law) from the damage potential (a

part of the dissipation potential). This damage growth along

with the critical damage criterion is used to predict ductile

fracture.

The damage growth law in references [1, 2], for

isothermal case, has only one material constant S0. The

constant is expressed in four measurable quantities (i.e., the

equivalent plastic strain and damage at the damage initia-

tion and fracture) so as to express the damage as a linear

function of strain in tension test [1]. However, this does not

agree with the experimental variation for many steels,

which is found to be non-linear. Since then, many non-

linear damage growth laws, for isothermal case, have been

proposed by various authors [3–8]. A non-linear damage

growth law for isothermal case has been reported in refer-

ence [9] based on the experimental measurement of void

growth [10] for three spheroidized steels [AISI 1015/1045/

1090]. Recently, a non-linear damage growth law for

isothermal case based on experimental measurement of

void growth for IS 2062: 2006 GR E410W A steel has also

been proposed [11].

It is well known that the mechanisms of void nucleation

and growth are sensitive to temperature changes. At high

temperature, the nucleation is affected by the change in the

rate of the thermally activated nucleation mechanism while

the growth gets affected due to the thermal softening of the

material.

There have been quite a few attempts to develop an

evolution equation for void growth by incorporating the

thermal effects. Using heuristic considerations, in reference

[12] a temperature-dependent model is postulated for the

void nucleation in terms of the evolution equation for a

porosity (void volume fraction) parameter. These models

account for the interaction of voids. Further, in [12] a cri-

terion is proposed that ductile fracture occurs whenever the

hardening–softening parameter j of the constitutive model

of an elastic–viscoplastic voided solid becomes zero. A

temperature-dependent yield stress is used to analyse a

single spherical void in the matrix material subjected to

external stress field in [13]. The evolution equation for void

growth is obtained in terms of the rate of distention. The

distension is defined as b3/(b3 - a3) where b is the matrix

radius and a is the void radius. An expression for the

threshold stress (i.e., the stress at the onset of void growth)

is also obtained that depends on the distention, initial

temperature, melting temperature, and initial yield stress.

Numerical analysis shows that the threshold stress is less

when the temperature dependence is incorporated. Further,

the thermal effect on the void growth is more at high strain
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rates. The void growth models presented in [12] and [13]

contain material functions of porosity or distention that are

not very easy to determine. Hence, these evolution equa-

tions are not very convenient for numerical simulation of

ductile fracture.

There have been attempts to include the thermal effects

in the void growth or damage models that have been

obtained earlier for room temperature. This effect has been

incorporated in [14] by assuming the parameter n (which is

the inverse of the strain rate sensitivity parameter) in the

Cocks–Ashby void growth model to be temperature

dependent. Experiments and finite-element (FE) simula-

tions on AISI 304L stainless-steel notched specimen in

tension test were conducted at high temperatures to obtain

the variation of n with temperature. (For FE simulation, a

plasticity model proposed by Horstemeyer and his co-

workers that includes temperature-dependent isotropic as

well as kinematic hardening is used.) It was observed that

the parameter n decreases when the temperature increases

from 800 to 1200 K. It was concluded that the Cocks–

Ashby model needs an explicit dependence on the tem-

perature. Also, it was observed that the void nucleation,

growth and coalescence take place at different rates at

higher temperature than at room temperature. The thermal

effect was incorporated in some of the ductile fracture

criteria that are based on the void nucleation and growth in

[15]. In this model, the evolution equations for the void

nucleation and growth depend on the nucleation and growth

threshold stresses. The thermal effect is included by scaling

the nucleation and growth threshold stress using the tem-

perature-dependent shear modulus that is obtained from

thermodynamic considerations. Also, the temperature

dependence in the Tuler–Butcher-type dynamic fracture

criteria was included, where the damage is considered as

some function of the entire stress history and thus depends

on the threshold stress. Again, the temperature dependence

of the damage is incorporated by scaling the threshold

stress using the temperature-dependent shear modulus,

obtained from thermodynamic considerations.

In the framework of CDM model also, there are some

attempts to include the thermal effect on the damage

growth. The temperature-dependent yield stress was used

[16] (given by the solid-state equation of Milella) to

incorporate the thermal effect on some of the material

parameters, appearing in the non-linear damage growth law

proposed earlier [7]. The material parameters are the

threshold strain (i.e., the equivalent plastic strain at the

onset of damage), the fracture strain (i.e., the equivalent

plastic strain at fracture) and the critical damage (i.e. the

damage at fracture). Based on experiments on round not-

ched bar in tension, a linear variation was proposed for

these material parameters with the homologous temperature

(i.e., a fraction of the melting point temperature on the

Kelvin scale). However, the thermal effect on the remain-

ing parameters is not investigated. Later, a temperature-

dependent yield stress and the Lemaitre’s damage growth

law were used to find the variation of damage with tem-

perature in steel by performing FE analysis and tension

tests on notched specimens at high temperature [17].

However, the parameters in the Lemaitre’s damage growth

model are assumed to be temperature-independent. The

critical total damage work was used as the fracture crite-

rion. The FE analysis shows that damage decreases with

temperature. However, no temperature-dependent damage

growth law was proposed.

For quite some time, some empirical temperature-de-

pendent ductile fracture criteria have been in use for the

numerical simulation of ductile fracture. The most common

of such criteria is due to Johnson and Cook (JC) [18]. Based

on torsion tests on Hopkinson bars over a range of tem-

peratures as well as some quasi-static tensile tests on not-

ched specimens, the fracture strain was obtained as a

function of the triaxiality, temperature and strain rate for

OFHC copper, Armco iron and 4340 steel. The damage was

defined as the cumulative equivalent plastic strain nor-

malized by the fracture strain. Thus, fracture occurs

whenever damage reaches unity. The proposed fracture

model was evaluated by conducting cylinder impact tests

and comparing the test results with the predicted values. It

was reported that the fracture in the tests occurs earlier than

the predicted values. A different function for the depen-

dence of the fracture strain on temperature and strain rate

for 30Cr2Ni4MoV ultra-super-critical steel was proposed in

[19] by conducting tensile tests at different temperatures

and strain rates. The model was evaluated by performing

upsetting (cylindrical, tapered and double-cone) tests at

higher temperature and comparing the fracture location and

the reduction ratio (at which fracture initiates) to the pre-

dicted results from the simulation using DEFOERM-3D FE

software by incorporating the proposed fracture model in it.

It was reported that the agreement between the tests and the

predicted results was good.

The literature survey shows that the empirical tempera-

ture-dependent ductile fracture criteria are not always

accurate in predicting the fracture in impact problems or

high-temperature problems. Thus, there is a need to develop

temperature-dependent criteria that are based on the physics

of the ductile fracture process: void nucleation, growth and

final coalescence. There are a few attempts to develop

temperature-dependent evolution equations for the void

growth. However, the nature of the material functions

involved in these evolution equations do not make them

very convenient to use in numerical simulation of fracture.

The number of studies to quantify the void (or damage)

growth at high temperature that can be easily integrated in

ductile fracture criteria (including those that use the

framework of CDM) is small.

The present work focuses on the phenomenological

modelling of ductile fracture using CDM theory, which has

been established within the thermodynamic framework.

The drawbacks of JC models have been widely reported;

see for example the paper by Guo et al [20]. The limitations
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of empirical models have been stated earlier. Hence, the

motivation of the present work is to incorporate the tem-

perature effects using the physics of the ductile fracture in

the proposed criteria. Since almost all the works try to

incorporate the effect of temperature empirically, the pre-

sent work focuses to incorporate the effect of temperature

through physics. Hence, it is expected that such an

approach would be better than the empirical approach. The

incorporation of the effects of the strain rate is left as a

future work. A high-temperature ductile damage growth

law for IS 2062: 2006 GR E410W A steel is proposed that

can be used in the framework of CDM. The temperature-

dependent material parameters are estimated from the void

growth measurement in tension tests at the following

temperatures: 300 (room temperature), 350, 425, 500 and

575 K. The technique of direct measurement of void growth

[10] is employed for this purpose.

2. CDM and damage growth law

It is assumed that the damage (D) at a point is isotropic.

Then, it is defined by the relation

D ¼ lim
DA!0

DAv

DA

� �
ð1Þ

where DA is a small area surrounding the point in some

plane and DAv denotes the area of void traces within DA.
The dissipative part of the thermodynamic force (-Y)

corresponding to the damage rate is calculated as the strain

energy release rate (due to damage) at constant stress

[1, 2, 20]. It is given by

�Y ¼ r2eq
2E 1� Dð Þ2 f

rm
req

� �
ð2Þ

where

f
rm
req

� �
¼ 2

3
1þ mð Þ þ 3 1� 2mð Þ rm

req

� �2
" #

ð3Þ

Here, E is Young’s modulus, m is Poisson’s ratio, rm the

mean part of the Cauchy stress tensor rij and req is the

equivalent stress related to the deviatoric part r0ij by

the relation

req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
r0ijr

0
ij

r
: ð4Þ

The ratio rm
�
req

� �
is termed as the triaxiality.

The equivalent plastic strain epeq is defined as

epeq ¼
Z

depeq; depeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
depijde

p
ij

r
ð5Þ

where depeq is the equivalent plastic strain increment and depij
is the plastic part of the incremental linear strain tensor.

The plastic potential for a damaged material at temper-

ature T can be written as [1, 2, 20]

F ¼ F1 rij; e
p
eq;D; T

� 	
þ FD �Y ; epeq;D; T

� 	
ð6Þ

where F1 is the plastic potential corresponding to yielding

and hardening and FD is the plastic potential associated

with damage. When a material follows the von Mises yield

criterion and hardens isotropically, then F1 is given by

F1ðrij; epeq;D; TÞ ¼
reqðrijÞ
1� D

� rYðepeq; TÞ ð7Þ

where rYðepeq; TÞ is the variable yield stress that is

approximated by the following power law:

rYðepeq; TÞ ¼ rY0ðTÞ þ KðTÞðepeqÞnðTÞ ð8Þ
Here, rY0ðTÞ is the temperature-dependent initial yield

stress and K(T) and n(T) are temperature-dependent hard-

ening parameters. Note that F1 becomes equal to the orig-

inal form of the von Mises plastic potential when D = 0. In

this case, FD reduces to zero. From the plastic potential of

Eq. (6), the flow rules (i.e., the elasto-plastic constitutive

relation and the damage growth law in incremental form)

are given by

depij ¼ dk
oF1

orij
¼ dk

1� Dð Þ
3r0ij
2req

ð9Þ

dD ¼ dk
oFD

oð�YÞ : ð10Þ

The inner product of the tensor equation (9) with itself

and substitution of the definitions of req (Eq. (4)) and depeq
(Eq. (5)) in the inner product lead to the following relation

between dk and depeq:

dk ¼ (1� D)depeq: ð11Þ
With this expression of dk, Eq. (10) for the damage growth

law takes the form

dD = (1� D)
oFD

o(� Y)
depeq: ð12Þ

Based on the experimental measurement of void growth

in tension test, for isothermal process, the following form

for the damage potential (FD) is suggested [11]:

FD ¼ a0

b0ð1� DÞ exp b0 �Yð Þ½ �: ð13Þ

Thus, Eq. (12) gives the following damage growth law:

dD ¼ a0 exp b0 �Yð Þ½ �depeq: ð14Þ

The material constants a0 and b0 were estimated from the

experimental measurement of void growth. When b0 is
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zero, it gives a linear variation of damage with equivalent

plastic strain.

3. Proposed damage growth law at high
temperature

The isothermal damage potential of Eq. (13) can be modified

for the case of high temperature in two different ways. In the

first case, we treat the damage parameters a0 and b0 to be

functions of temperature. Then, the damage potential becomes

FD ¼ a0ðTÞ
b0ðTÞð1� DÞ exp b0ðTÞ �Yð Þ½ �: ð15Þ

Then, as per Eq. (12), the damage growth law takes the

form

dD ¼ a0ðTÞ exp b0ðTÞ �Yð Þ½ �depeq: ð16Þ
In this case, the temperature dependence of a0 and b0 is

estimated from the experimental measurement of void

growth in tension test at various temperatures. In the second

case, a0 and b0 are kept constant at the room temperature

level and the temperature dependence of damage is incor-

porated by a multiplicative function f(T) in the expression

(15) for the damage potential. Then, the damage potential

and the corresponding damage growth law become

FD ¼ a0

b0ð1� DÞ exp b0 �Yð Þ½ � f ðTÞ½ � ð17Þ

dD ¼ a0 exp b0 �Yð Þ½ �depeq
n o

f ðTÞ½ �: ð18Þ

In this case also, the material parameters of the function

f(T) are obtained from the experimental measurement of

damage in tension test at various temperatures.

The experimental procedure for the measurement of void

growth at various temperatures and the estimation of tem-

perature dependence of the damage parameters a0(T) and

b0(T) and the material function f(T) are explained in the

next section.

4. Experimental procedure for measurement
of damage, triaxiality, equivalent plastic strain
and equivalent stress at high temperature

The material used is IS 2062: 2006 GR E410W A steel,

whose chemical composition is given in Appendix 1. The

IS 2062: 2006 GR E410W A steel is a hot rolled and highly

tensile structural steel. The steel possesess excellent weld-

ability property, because of which it is employed in the

boilers used in nuclear power plants. The cylindrical test

specimens were kept in the thermal chamber of a 10-kN

capacity UTM (H10kT TINIUS OLSEN) for 1 h and then

tested in the displacement control mode to predefined

plastic strain levels (5%, 10%, up to fracture). The UTM

with thermal chamber and temperature controller device is

shown in figure 1. Testing was done at 300 (room tem-

perature), 350, 425, 500 and 575 K temperatures.

The procedure used in the present work to measure the

damage, triaxiality, equivalent plastic strain and equivalent

stress is very well established; see for example Berdin et al

[21] and Lemaitre and Desmorat [22]. Also, the procedure

has been shown to provide good correlation with the

experimentally observed behaviour in static, see Dhar et al

[23] and Gautam and Dixit [24], as well as strongly non-

homogeneous deformation like impact problems, see Gau-

tam and Dixit [25, 26]. Until now all the current works on

ductile fracture using CDM use the data obtained at room

temperature and uniaxial tension tests to simulate damage

Figure 1. UTM (H10kT TINIUS OLSEN) with thermal chamber and temperature controller device.
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growth in complex loading histories. The current work, for

the first time, considers the effect of temperature on the

damage growth law itself.

4.1 Measurement of equivalent plastic strain

The average equivalent plastic strain (at the minimum

cross-section) is calculated as [11]

epeq ¼ 2 ln
d0

d

� �
ð19Þ

where do and d are the initial and the current diameters of

the cross-section, respectively. It is to be noted that the

equivalent plastic strain cannot be found experimentally at

the centre of the necking cross-section. Also, it has been

found that the equivalent plastic strain is maximum at the

centre of the necking zone and continuously decreases

along the radial line. Hence, the average equivalent plastic

strain is calculated using Eq. (19) at the necking cross-

section.

4.2 Measurement of damage

As mentioned earlier, the direct method of void growth

measurement [10] is employed in the present work. It is

described in detail elsewhere [11]. Here, only some salient

points have been reproduced. The damage is maximum at

the centre of the necking zone and continuously decreases

along the radial line. Hence, to calculate average damage

variable D in this zone, six different locations are selected

to find the average damage. The damage is measured at six

representative surface elements (RSEs) on the polished

surface (which coincides with the minimum cross-section

of the necked zone) of thin samples. The locations of these

surfaces are shown in figure 2. Based on the size of the

defects, the characteristic dimension of RSE is chosen to be

on the order of 200 9 200 lm. A high-resolution image

(magnification factor of 1000) of each RSE is obtained at

20 kV using SEM imaging technique and an image pro-

cessing program from the MATLAB. A magnified SEM

image of a sample RSE is shown in figure 3. The damage

D at an RSE is calculated as the ratio DAv/DA where DA is

the RSE area and DAv is the area of void traces within DA.
Then, the average damage (Dav) at the polished surface is

estimated as the average of the damage values over all the

RSEs of the surface.

4.3 Measurement of triaxiality

The average triaxiality ðrm=reqÞav over the minimum cross-

section is given by [27]

rm
req

� �
av

¼ 1þ 2R

a

� �
ln 1þ a

2R

� 	
 �
� 2

3

� 
ð20Þ

where a is the radius of the cross-section and R is the radius

of curvature of the necked profile at the cross-section. The

value for R was calculated by first obtaining an image of

necked profile using a microscope, then fitting a fourth-

degree polynomial through the profile using a software and

finally using a standard expression for the radius of cur-

vature [11]. Once the necking starts, the effect of the

nonhomogeneous deformation can be accounted based on

the correction factor proposed in the work of Bridgman

[27]. In the present work, this correction factor is used to

Figure 2. Locations of six representative surface elements.

Figure 3. Magnified SEM images of a sample representative

surface element.
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take into account the effect of non-uniformity of the stress

across the necking section.

Based on the experimental measurements, the ratio a/R

after necking can be approximated as

a

R

� 	
¼ exp AðTÞepeq � BðTÞ

� 	
ð21Þ

where the parameters A(T) and B(T) (called the necking

parameters) depend on the temperature. Table 1 gives the

values of the necking parameters at different non-dimen-

sional temperatures T� where T� is defined as

T� ¼ T � TRM

TM � TRM

� �
ð22Þ

Here, TRM is room temperature (300 K) and TM is the

melting temperature of the material (1575 K). The values in

table 1 suggest a linear dependence of the necking

parameters A and B on the non-dimensional temperature

T�. Using the least-square method, this dependence can be

expressed as

AðTÞ ¼ 3:603þ 4:287 T�ð Þ; ð23Þ

BðTÞ ¼ 4:504þ 5:353 T�ð Þ: ð24Þ

4.4 Experimental results on average values

of equivalent plastic strain, damage and triaxiality

over the minimum cross-section in necked region

Experimentally measured values of the average damage and

average triaxiality at various levels of the average equiva-

lent plastic strain are given in tables 8, 9, 10, 11 and 12

(Appendix 2) for temperatures of 300, 350, 425, 500 and

575 K, respectively.

The data from tables 8–12 (Appendix 2) are represented

graphically in figures 4–8 and 9–13.

Table 1. Experimental values of necking parameters A(T) and

B(T) (Eqs. (23) and (24)) at different non-dimensional tempera-

tures T�.

Temperature (K) T* A(T) B(T)

300 0 3.476 4.4

350 0.039216 3.882 4.801

425 0.098039 4.115 5.116

500 0.156863 4.226 5.297

575 0.215686 4.502 5.639

Figure 4. Experimental variation of average triaxiality with

average equivalent plastic strain at room temperature (300 K).

Figure 5. Experimental variation of average triaxiality with

average equivalent plastic strain at 350 K.

Figure 6. Experimental variation of average triaxiality with

average equivalent plastic strain at 425 K.
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Figures 4–8 show that, at a given level of (average)

equivalent plastic strain, the (average) triaxiality decrea-

ses slightly with temperature after necking. The value of

the (average) equivalent plastic strain up to which the

(average) triaxiality remains constant is called the neck-

ing strain (en). From these graphs, the dependence of the

necking strain (en) on the non-dimensional temperature

T� can be modelled by the following quadratic

expression:

enðTÞ ¼ 0:240þ 0:035 T�ð Þ þ 0:401 T�ð Þ2 ð25Þ
Figures 9–13 show that the growth of (average) damage

with (average) equivalent plastic strain is slower at higher

temperature.

Figure 8. Experimental variation of average triaxiality with

average equivalent plastic strain at 575 K.

Figure 9. Experimental variation of average damage with

average equivalent plastic strain at room temperature (300 K).

Figure 7. Experimental variation of average triaxiality with

average equivalent plastic strain at 500 K.

Figure 10. Experimental variation of average damage with

average equivalent plastic strain at 350 K.

Figure 11. Experimental variation of average damage with

average equivalent plastic strain at 425 K.
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4.5 Hardening relation

First, the true stress is converted to the equivalent stress

req at each level of the (average) equivalent plastic strain

(eeq) [11] by multiplying the following correction factor

[27]:

CF ¼ 1

1þ 2R
a

� �
ln 1þ a

2R

� �
 !

: ð26Þ

Here, the ratio a/R, at each temperature, is obtained from

Eqs. (21), (23) and (24). Then, the least-square method is

used to fit the power law of Eq. (8) through the values of

(req,eeq) to obtain the hardening parameters rY0ðTÞ,
K(T) and n(T) at different temperatures. These values are

shown in table 2.

The values in table 2 suggest a quadratic dependence of

the hardening parameters rY0ðTÞ, K(T) and n(T) on the non-

dimensional temperature T�. Using the least-square

method, this dependence can be expressed as

rY0 Tð Þ ¼ 220� 48:36 T�ð Þ � 314:2 T�ð Þ2; ð27Þ

KðTÞ ¼ 577� 316:6 T�ð Þ � 1314 T�ð Þ2; ð28Þ

nðTÞ ¼ 0:433þ 0:612 T�ð Þ � 0:431 T�ð Þ2 ð29Þ
Finally, a graph of the equivalent stress versus the plastic

part of the logarithmic strain at different temperatures is

generated using the power law of Eq. (8) and these

expressions for rY0ðTÞ, K(T) and n(T). The graph is shown

in figure 14.

5. Determination of temperature dependence
of a0ðTÞ and b0ðTÞ of Eq. (16) from experimental
data

In order to determine the temperature dependence of the

damage parameters a0(T) and b0(T), Eq. (16) is expressed

as

ln
dD

depeq

� �
¼ ln a0ðTÞð Þ þ b0ðTÞð�YÞ ð30Þ

First, at each temperature, the difference formula

ln
dD

depeq

� �
iþ1

= ln
Diþ1 � Di

(epeq)iþ1 � (epeq)i

� �
i ¼ 1; 2; . . .ð Þ ð31Þ

is used to calculate ln dD=depeq

� 	
at the level i?1 of (av-

erage) eeq using the data from tables 8–12. Then, the plastic

potential F1 (Eq. (7)) is set to zero and the hardening law

(Eq. (8)) is used to express the equivalent stress (req) in

terms of the hardening parameters rY0ðTÞ, K(T) and n(T):

req
� � ¼ 1� Dð Þ rY0ðTÞ þ KðTÞðepeqÞnðTÞ

� 	
ð32Þ

Next, Eq. (32) is used to eliminate req from expressions

(2–3). As a result, the expression of the (average)

Table 2. Experimental values of hardening parameters rY0ðTÞ,
K(T) and n(T) of the power law (Eq. (8)) at different non-di-

mensional temperatures T�.

Temperature

(K)

Non-dimensional

temperature T*

Hardening

parameters of power

law (Eq. (8))

rY0(T) n(T) K(T)

300 0 220 0.433 577

350 0.039216 218 0.449 558

425 0.098039 212 0.485 532

500 0.156863 205 0.52 495

575 0.215686 195 0.54 445

Figure 13. Experimental variation of average damage with

average equivalent plastic strain at 575 K.

Figure 12. Experimental variation of average damage with

average equivalent plastic strain at 500 K.
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dissipative part of the thermodynamic force (-Y) at the

level i?1 of the equivalent plastic strain becomes:

ð�YÞiþ1 ¼
1

2E
rY0ðTÞ þ KðTÞðepeqÞnðTÞiþ1

h i2
2

3
ð1þ mÞ þ 3ð1� 2mÞ rm

req

� �2

iþ1

" #
i ¼ 1; 2; . . .ð Þ

ð33Þ

Next, (-Y) at the level i?1 is calculated from the above

expression by taking the corresponding (average) values of

the equivalent plastic strain (epeq) and triaxiality (rm=req)
from tables 8–11 and those of the hardening parameters

rY0ðTÞ, K(T) and n(T) from table 2. In Eq. (33), the elastic

parameter m(T) is assumed to be temperature-independent

with the following value:

m(T) ¼ 0:3: ð34Þ
Further, the decrease in the elastic parameters E (in GPa)

with temperature T is estimated from the following relation:

EðT�Þ ¼ 200 1� 0:2924 T�ð Þ � 0:3796 T�ð Þ2
� 	

ð35Þ

which is obtained from the experimental data about steel

[28] using the least-square method.

Tables 13–17 (Appendix 3) show the average values of

ln(dD=depeq) and (-Y), at different temperatures, calculated

from Eqs. (31) and (33) using the experimental values of

(epeq)eq; (D)eq and ðrm=reqÞeq of tables 8–12, the experi-

mental values of rY0ðTÞ, K(T) and n(T) from table 2 and the

values of E(T) and mðTÞ from Eqs. (34) and (35). It is

observed that, at each level of (average) equivalent plastic

strain, the (average) dissipative part of the thermodynamic

force (-Y) decreases with temperature.

Finally, Eq. (30) is fitted through the data of tables 13–17

by the method of least squares to obtain figures 15–19. In

these figures, the natural logarithm of the damage param-

eter a0(T) is the intercept on the ln(dD=depeq)av axis while

the damage parameter b0(T) is the slope. The values of

a0(T) and b0(T), at different temperatures, obtained from

these figures are given in table 3.

The values in table 3 suggest a quadratic dependence of

a0(T) on the non-dimensional temperature T�. Using the

least-square method, this dependence can be expressed as

a0ðTÞ ¼ 0:0045þ 0:046 T�ð Þ2 ð36Þ
Here

T� ¼ T � TRM

TM � TRM

� �
ð37Þ

where TRM is room temperature (taken as 300 K) and TM is

the melting point temperature (taken as 1575 K). The plot

of the least-square-fitted Eq. (36) is shown in figure 20 as

solid line.

A similar procedure for the values for the parameter

b0(T) suggests a linear dependence of b0(T) on the non-

dimensional temperature T�. Using the least-square

method, this dependence can be expressed as

b0ðTÞ ¼ 2:62þ 2:219 T�ð Þ: ð38Þ
The plot of the least-square-fitted Eq. (38) is shown in

figure 21 as solid line.

It is observed that both the damage parameters a0(T) and

b0(T) increase with temperature T. Further, if the room

temperature values of a0 and b0 are used in the damage

growth law of Eq. (16), it will lead to an over-estimation of

the damage growth at higher temperature at the same level

of equivalent plastic strain.

The damage growth law of Eq. (16) is integrated

numerically:

Diþ1 ¼ Di þ a0ðTÞ expðb0ðTÞð�YÞiÞ
� �

epeq

� 	
iþ1

� epeq

� 	
i

� �
i ¼ 1; 2; . . .ð Þ

ð39Þ

Figure 15. Graph of ln(dD=depeq)av versus (-Y)av at room

temperature (300 K) based on the average experimental values

of table 13.
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to obtain the graph of the (average) damage versus the

(average) equivalent plastic strain. Figures 22–26 show a

comparison of these graphs with the experimental data of

tables 8–12 for temperatures 300, 350, 425, 500 and 575 K.

The agreement between the two is good. This implies that

the proposed damage growth law (Eq. (16)) models the

experimental trend of damage growth in IS 2062: 2006 GR

E410W A steel at high temperatures well.

These graphs (figures 22–26), when extrapolated up to

fracture, become almost vertical. Thus, approximate values

of the critical damage (Dcr) at different temperatures can be

obtained from these graphs as the values of damage at

which the slope becomes equal to or greater than 10. The

critical damage values for IS 2062: 2006 GR E410W A

steel, as estimated from figures 21–25, are given in table 3.

It is observed that the critical damage (Dcr) increases with

temperature T. This implies, at higher temperature, that the

ductile fracture would occur at higher level of damage.

The values in table 4 suggest a quadratic dependence of

Dcr on the non-dimensional temperature T�. Using the

least-square method, this dependence can be expressed as

DcrðTÞ ¼ 0:42þ 0:32 T�ð Þ þ 2:626 T�ð Þ2: ð40Þ

6. Determination of function f(T) of Eq. (18)
from experimental data

To determine the function f(T) of Eq. (18) from the

experimental data, this equation is first rearranged as

1

a0 exp b0 �Yð Þ½ �f g
dD

depeq
¼ f ðTÞ: ð41Þ

Then, at temperatures 300, 350, 425, 500 and 575 K, the

values of 1=a0 exp b0 �Yð Þ½ �f gðdD=depeqÞ are calculated at

different strain levels using the experimental data of (-Y)

Figure 17. Graph of ln(dD=depeq)av versus (-Y)av at 425 K based

on the average experimental values of table 15.

Figure 16. Graph of ln(dD=depeq)av versus (-Y)av at 350 K based

on the average experimental values of table 14.

Figure 18. Graph of ln(dD=depeq)av versus (-Y)av at 500 K based

on the average experimental values of table 16.

Figure 19. Graph of ln(dD=depeq)av versus (-Y)av at 575 K based

on the average experimental values of table 17.
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and dD=depeq from tables 13–17 and the values of a0 and b0

at room temperature from table 3:

a0 ¼ 0:0045; b0 ¼ 2:62 MPað Þ�1: ð42Þ
Then, at each temperature, the mean value of the quantity

1=a0 exp b0 �Yð Þ½ �f gðdD=depeqÞ over all the strain levels is

obtained. As per Eq. (41), this mean can be considered as

the experimental value of f(T). Table 5 shows the experi-

mental value of f(T) at different non-dimensional

temperatures.

Finally, the expression for f(T) is obtained by fitting an

appropriate function through the experimental values of

table 5. These values suggest a power-law type of depen-

dence on the non-dimensional temperature T�:

f ðTÞ ¼ 1þ c0ðT�Þm½ �; ð43Þ
where the material constants c0 and m, as determined from

the least-square method, are

c0 ¼ 6:606;m ¼ 1:178: ð44Þ

Thus, the proposed damage growth law at high temper-

ature for IS 2062:2006 GR E410W A steel is

dD ¼ a0 exp b0 �Yð Þ½ �depeq
n o

1þ c0ðT�Þm½ �; ð45Þ

where the damage parameters a0, b0, c0 and m are given by

Eqs. (42) and (44).

The damage growth law of Eq. (45) is integrated

numerically:

Figure 21. Variation of damage parameter (b0) with T* (effec-

tive temperature).

Figure 22. Comparison of the integral of the damage growth law

of Eq. (16) with experimental data at room temperature (300 K) of

table 8.

Figure 20. Variation of damage parameter (a0) with T* (effec-

tive temperature).

Table 3. Calculated values of damage parameter at different

temperatures from figures 15–19.

Temperature

(K)

Non-dimensional

temperature T* a0(T)

b0(T)

(MPa-1)

300 0 0.00450 2.62

350 0.039216 0.00466 2.72

425 0.098039 0.00487 2.85

500 0.156863 0.00550 2.94

575 0.215686 0.00650 3.12
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Diþ1 ¼ Di þ a0 expðb0ð�YÞiÞ
� �

epeq

� 	
iþ1

� epeq

� 	
i

� �
1þ c0ðT�Þm½ � i ¼ 1; 2; . . .ð Þ

ð46Þ
to obtain the graph of the (average) damage versus the

(average) equivalent plastic strain. Figure 27 shows a

comparison of the graph at temperature 575 K with the

experimental data of table 12. In this case also, the agree-

ment between the two is good. This implies that the second

version of the proposed damage growth law at high tem-

perature (Eq. (44) where a0, b0, c0 and m are given by

Eqs. (41) and (43)) also models the experimental trend of

damage growth in IS 2062: 2006 GR E410W A steel well.

The graph of the (average) damage versus the (average)

equivalent plastic strain at T = 575 K corresponding to the

first version of the proposed damage growth law of

Eq. (16) (obtained from Eq. (39)) is reproduced in fig-

ure 27 for comparison. It is observed that the first version

of the damage growth law of Eq. (16) (where a0(T) and

b0(T) are considered to be functions of temperature T) has

better agreement with the experimental results than the

second version of damage growth law of Eq. (45) (where

a0 and b0 are kept constant at the room temperature level

and the temperature dependence is modelled by a multi-

plicative power law involving two additional material

constants).

7. Demonstration of the predictive capability
of the model

Next, the predictive capability of the model is demon-

strated. This is done to show that the present model agrees

with the experimental results over the range of temperature

considered in the present work. Hence, to do this the data

Figure 25. Comparison of the integral of the damage growth law

of Eq. (16) with experimental data at 500 K of table 11.

Table 4. Values of critical damage at different temperatures

estimated from figures 22–26.

Temperature (K) 300 350 425 500 575

Non-dimensional

temperature T�
0 0.039216 0.098039 0.156863 0.215685

Critical damage Dcr 0.42 0.43 0.48 0.53 0.61

Figure 23. Comparison of the integral of the damage growth law

of Eq. (16) with experimental data at 350 K of table 9.

Figure 24. Comparison of the integral of the damage growth law

of Eq. (16) with experimental data at 425 K of table 10.
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for temperature 425 K are removed and the values of the

parameters a0 and b0 are shown in table 6 for four tem-

peratures, viz. 300, 350 500 and 575 K; the least-square-

fitted data for these parameters are shown in Eqs. (47) and

(48), respectively. Figures 28 and 29 show the plot of

Eqs. (47) and (48) alongside the values of table 6.

Figure 27. Comparison of the integrals of the damage growth

laws of Eqs. (16) and (46) with experimental data of table 12 at

575 K.

Figure 26. Comparison of the integral of the damage growth law

of Eq. (16) with experimental data at 575 K of table 12.

Table 5. Experimental values of f(T) calculated using Eq. (41),

tables 13–17 and room temperature values of a0 and b0.

Temperature

T (K)

Non-dimensional

temperature T�
Experimental value

of f(T)

300 0 1.0000

350 0.039216 1.1500

425 0.098039 1.4037

500 0.156863 1.7229

575 0.215685 2.1444

Figure 29. Variation of damage parameter (b�0) with T* (effec-

tive temperature).

Figure 28. Variation of damage parameter (a�0) with T* (effec-

tive temperature).

Table 6. Calculated values of damage parameters using four

different temperatures from tables (i.e., neglecting the data of 425

K).

Temperature

(K)

Non-dimensional

temperature T* a0(T)

b0(T)

(MPa-1)

300 0 0.00450 2.62

350 0.039216 0.00466 2.72

500 0.156863 0.00550 2.94

575 0.215686 0.00650 3.12
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a�0 ¼ 0:0045þ 0:0432 T�ð Þ2 ð47Þ
b�0 ¼ 2:62þ 2:221 T�ð Þ ð48Þ

The value of a�0 and b�0 at T = 425 K can be found using

Eqs. (47) and (48) as 0.00491 and 2.837, respectively. Next,

using Eq. (16) the predicted damage growth curve can be

plotted against average equivalent plastic strain. This is

shown in figure 30 alongside the experimental data

obtained at 425 K. It can be seen that the present model is

able to very accurately predict the damage growth at T =

425 K. Hence, it is clear that the proposed model will be

able to capture damage growth, within the range of tem-

peratures employed in the current work.

8. Conclusions

Two versions of a simple non-linear ductile damage

growth law (for IS 2062: 2006 GR E410W A steel) are

proposed at high temperature. In the first version, there are

two temperature-dependent damage parameters a0(T) and

b0(T). In the second version, these two damage parameters

a0 and b0 are kept constant at the room temperature level

and the temperature dependence of the damage is incor-

porated by a multiplicative power-law-type function of

temperature. This function involves two additional mate-

rial constants: c0 and m. The temperature dependence of

the two damage parameters in the first version and the

four material constants appearing in the second version

are estimated from the measurement of void growth in

tension test (with thermal chamber) at the following

temperatures: 300 (room temperature), 350, 425, 500 and

575 K. Further, a procedure to obtain an approximate

value of the critical damage (at different temperatures),

from the damage versus equivalent plastic strain graph, is

suggested. The following observations can be made about

this damage growth law:

• At a given level of equivalent plastic strain, the

damage decreases when the temperature effect is

included. This is because the dissipative part of the

thermodynamic force (-Y) decreases with temperature

at each equivalent plastic strain level.

• In the first version, both the damage parameters a0(T)

and b0(T) increase with temperature. However, if the

room temperature values of a0 and b0 are used in the

first version of the damage growth law of Eq. (18), it

leads to an over-estimation of the damage growth at

higher temperature at the same level of equivalent

plastic strain.

• The critical damage (Dcr) increases with temperature.

This implies that, at higher temperature, the ductile

fracture would occur at higher level of damage.

• The first version of the damage growth law has better

agreement with the experimental results on damage

growth.
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Appendix 1

The material used is IS 2062: 2006 GR E410W A steel,

whose chemical composition (as determined by Spectro-

Chemical Test: E415 – 2008, Standard Test Method for

Atomic Emission Vacuum Spectrometric Analysis of Car-

bon Steel) is given in table 7.

Figure 30. Comparison of the integrals of the damage growth

laws of Eq. (16) at different damage parameters (a�0, b
�
0) at 425 K.

Table 7. Chemical composition of IS 2062: 2006 GR E410W A

steel.

% C 0.19 % Ni 0.01

% S 0.004 % Mo 0.01

% P 0.012 % Cu 0.01

% Mn 0.22 % V 0.01

% Si 0.07 % Carbon eq. 0.226

% Cr 0.018 % Al 0.024

Remaining % is Fe
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Appendix 2

Experimental values of average equivalent plastic strain,

damage and triaxiality at different temperatures (See

Tables 8–12).

Table 8. Experimental values of average equivalent plastic

strain, damage and triaxiality at 300 K.

Level of average

equivalent plastic

strain (i)

Average

equivalent

plastic strain

(epeq)av

Average

damage

Dav

Average

triaxiality

ðrm=reqÞav
1 0 0.000 0.333

2 0.049 0.001 0.333

3 0.129 0.0032 0.333

4 0.179 0.0045 0.333

5 0.273 0.0071 0.338

6 0.321 0.0085 0.341

7 0.555 0.0165 0.352

8 0.615 0.020 0.358

9 0.69 0.027 0.371

10 0.804 0.042 0.389

11 0.90 0.063 0.403

12 0.99 0.091 0.415

13 1.04 0.11 0.431

Table 9. Experimental values of average equivalent plastic

strain, damage and triaxiality at 350 K.

Level of average

equivalent plastic

strain (i)

Average

equivalent

plastic strain

(epeq)av

Average

damage

Dav

Average

triaxiality

ðrm=reqÞav
1 0.000 0.0000 0.333

2 0.010 0.0009 0.333

3 0.030 0.0023 0.333

4 0.111 0.0034 0.333

5 0.248 0.0064 0.333

6 0.339 0.0082 0.338

7 0.474 0.0125 0.345

8 0.698 0.0282 0.369

9 0.839 0.0470 0.391

10 0.948 0.0750 0.413

11 1.064 0.1106 0.438

Table 10. Experimental values of average equivalent plastic

strain, damage and triaxiality at 425 K.

Level of average

equivalent plastic

strain (i)

Average

equivalent

plastic strain

(epeq)av

Average

damage

Dav

Average

triaxiality

ðrm=reqÞav
1 0.000 0.0000 0.333

2 0.010 0.0006 0.333

3 0.025 0.0009 0.333

4 0.112 0.0035 0.333

5 0.247 0.0065 0.333

6 0.442 0.0113 0.341

7 0.584 0.0165 0.353

8 0.719 0.0269 0.368

9 0.790 0.0355 0.378

10 0.993 0.0795 0.417

11 1.025 0.0877 0.425

12 1.085 0.1093 0.441

Table 11. Experimental values of average equivalent plastic

strain, damage and triaxiality at 500 K.

Level of average

equivalent plastic

strain (i)

Average

equivalent

plastic strain

(epeq)av

Average

damage

Dav

Average

triaxiality

ðrm=reqÞav
1 0.000 0.0000 0.333

2 0.010 0.0010 0.333

3 0.085 0.0024 0.333

4 0.127 0.0037 0.333

5 0.249 0.0058 0.333

6 0.340 0.0085 0.334

7 0.418 0.0114 0.337

8 0.510 0.0139 0.343

9 0.647 0.0210 0.356

10 0.801 0.0362 0.375

11 0.921 0.0582 0.399

12 1.045 0.0846 0.426

13 1.100 0.0990 0.442
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Appendix 3

Values of natural logarithm of the slope and (-Y) from the

experimental data at different evaluated temperatures (See

Tables 13–17).

Table 12. Experimental values of average equivalent plastic

strain, damage and triaxiality at 575 K.

Level of average

equivalent plastic

strain (i)

Average

equivalent

plastic strain

(epeq)av

Average

damage

Dav

Average

triaxiality

ðrm=reqÞav
1 0.000 0.000 0.333

2 0.024 0.000 0.333

3 0.039 0.000 0.333

4 0.059 0.000 0.333

5 0.161 0.002 0.333

6 0.232 0.004 0.333

7 0.432 0.009 0.338

8 0.503 0.013 0.341

9 0.677 0.022 0.356

10 0.827 0.035 0.375

11 0.946 0.054 0.399

12 1.025 0.069 0.417

13 1.120 0.092 0.443

Table 13. Calculated (average) values of natural logarithm of

the slope and (-Y) from the experimental data at 300 K of table 8.

Level of average

equivalent plastic

strain (i)

Natural logarithm

of average slope

ðdD=depeqÞav

Average dissipative part

of the thermodynamic

force (-Y)av (MPa)

2 -3.8918 0.121

3 -3.5936 0.3568

4 -3.6497 0.5278

5 -3.5878 0.6145

6 -3.5347 0.7607

7 -3.3759 0.8294

8 -2.8416 1.1394

9 -2.3716 1.2162

10 -2.0281 1.3124

11 -1.5198 1.4612

12 -1.1676 1.591

13 -0.9676 1.7183

Table 14. Calculated (average) values of natural logarithm of

the slope and (-Y) from the experimental data at 350 K of table 9.

Level of average

equivalent plastic

strain (i)

Natural logarithm

of average slope

ðdD=depeqÞav

Average dissipative part

of the thermodynamic

force (-Y)av (MPa)

2 -2.4079 0.1224

3 -2.6593 0.2132

4 -4.3457 0.2842

5 -3.8016 0.4617

6 -3.9286 0.677

7 -3.4467 0.8025

8 -2.658 0.9745

9 -2.0149 1.2522

10 -1.3591 1.4311

11 -1.1812 1.5776

Table 15. Calculated (average) values of natural logarithm of

the slope and (-Y) from the experimental data at 425 K of

table 10.

Level of average

equivalent plastic

strain (i)

Natural logarithm

of average slope

ðdD=depeqÞav

Average dissipative part

of the thermodynamic

force (-Y)av (MPa)

2 -2.8824 0.1161

3 -3.6756 0.1858

4 -3.5456 0.2323

5 -3.7869 0.4025

6 -3.7065 0.5972

7 -3.3072 0.8421

8 -2.5593 1.013

9 -2.1163 1.1754

10 -1.5286 1.2628

11 -1.3633 1.5302

12 -1.0217 1.5763

Table 16. Calculated (average) values of natural logarithm of

the slope and (-Y) from the experimental data at 500 K of

table 11.

Level of average

equivalent plastic

strain (i)

Natural logarithm

of average slope

ðdD=depeqÞav

Average dissipative part

of the thermodynamic

force (-Y)av (MPa)

2 -2.3026 0.1112

3 -3.9668 0.1655

4 -3.4563 0.3101

5 -4.098 0.3706

6 -3.5069 0.5244

7 -3.3094 0.6291

8 -3.5975 0.7162

9 -2.9557 0.8178

10 -2.3157 0.9695

11 -1.6951 1.1436

12 -1.5492 1.2913

13 -1.3381 1.4525
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Table 17. Calculated (average) values of natural logarithm of

the slope and (-Y) from the experimental data at 575 K of

table 12.

Level of average

equivalent plastic

strain (i)

Natural logarithm

of average slope

ðdD=depeqÞav

Average dissipative part

of the thermodynamic

force (-Y)av (MPa)

2 -4.0697 0.1034

3 -6.5248 0.1753

4 -5.1761 0.2007

5 -4.0625 0.2302

6 -4.0197 0.3531

7 -3.5535 0.4276

8 -3.033 0.622

9 -2.9463 0.6886

10 -2.411 0.854

11 -1.8689 1.0018

12 -1.6203 1.1301

13 -1.4404 1.2204
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