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Abstract. We consider the linear stability problem of inviscid, incompressible swir-
ling flows with radius-dependent density with respect to two-dimensional distur-
bances. Some results of Miles on the parallel flow stability theory are extended to the
swirling flow stability theory. In particular, series solutions for the stability equation
for swirling flows are obtained and these solutions are used in the study of the varia-
tion of the Reynolds stress. For singular neutral modes it is shown that the Reynolds
stress varies like the inverse square of the radial distance in agreement with the homo-
geneous flow result of Maslowe & Nigam. It is also proved that singular neutral modes
do not exist whenever the value of the Richardson number at the critical layer exceeds
one quarter.
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1. Introduction

The stability of swirling flows has been studied extensively and for the vast literature on this
problem one may be referred to the books by Chandrasekhar (1961), Drazin & Reid (1981), and
Chossat & Iooss (1994). For analytical studies on this problem one considers a basic flow with
azimuthal and axial velocity components and general three-dimensional disturbances (see, for
example, Howard & Gupta (1962)). However the stability of basic flows with only an azimuthal
velocity component to infinitesimal azimuthal disturbances has also been studied in many works
(see, for example, Drazin & Reid (1981)). In cylindrical polar coordinates (r.θ, z) the basic
flow velocity is given by (0, V (r), 0) and the basic flow density is ρ0(r) while the basic flow
pressure P0(r) is calculated from the Euler equations. The angular velocity �(r) = V (r)

r
. The

flow domain is the annular region between two infinite concentric cylinders with radii R1 and
R2 where 0 < R1 < R2 < ∞. Here the cylinders can rotate and create a swirling flow by the
influence of viscosity and a density variation can be created by maintaining the two cylinders
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at different temperatures. But, as a first step in the stability analysis, we consider the inviscid
stability analysis only ignoring the viscous and diffusive effects.

If the disturbed flow is given by (u, V +v, 0) and the disturbances are azimuthal disturbances,
that is, disturbances are of the form (function of r)eim(θ−ct) then m is an integer and it is called
the azimuthal wave number and c = cr+ici is called the (complex) phase velocity. The boundary
conditions satisfied by the disturbances is û = 0 at r = R1, R2 where u = û(r)eim(θ−ct) is the
axial disturbance velocity. Fung & Kurzweg (1975) have found the linear stability equation for
this problem and studied the instability of some specific basic flows. Then Fung (1983) obtained
some general analytical results for this problem, in particular he obtained the semicircular and
semielliptical instability regions for basic flows satisfying the condition ab(Dρ0) ≥ 0 where
a =min�(r), b =max�(r), and the differential operator D is defined by D = d

dr
and the min

and max stand for minimum and maximum taken over [R1, R2]. Moreover, Fung (1983) has

defined the Richardson number J by J = �2(Dρ0)

ρ0r(D�)2 and has found that a necessary condition for
instability is that the minimum of the Richardson number is less than one quarter.

Recently this problem has been studied in Dattu & Subbiah (2014a) where an improved insta-
bility region given by a generalized semiellipse theorem has been found for arbitrary angular
velocity profiles. This improved instability region has also been used to find an estimate for the
growth rate of unstable disturbances. The two-dimensional instability of the Rankine vortex with
variable density has been studied recently in Dixit & Govindarajan (2011). Since D� = 0 in
this case they have studied the instability with respect to the Atwood number rather than the
Richardson number. Subsequently Dixit & Govindarajan (2011) have considered the stability of
smoothly varying angular velocity profiles for which D� is not zero but the growth rate vari-
ations with respect to the Atwood number alone are presented and the Richardson number is
not involved in their analysis. Also the instability of inviscid incompressible swirling flows with
variable density with respect to two-dimensional disturbances has been studied asymptotically
and numerically in Di Pierro & Abid (2010). For slowly varying velocity profiles Di Pierro &
Abid (2010) have studied the growth rate of an unstable disturbance in the limit |m| >> 1 and
found that their asymptotic result agrees with their numerical result. Subsequently a numerical
study of the nonlinear stability of swirling flows with variable density was made in Di Pierro
& Abid (2012) and it was found that the linear and asymptotic results of their earlier paper
are in agreement with their new results. In addition to their numerical results a brief discus-
sion of the importance of the swirling flows and their stability is also given in their paper. It
is stated that swirling flows are important for many application devices and as a fundamental
problem considering their relevance to aircraft trailing vortices, vortical transport of momentum
and energy in meteorology, and vortex breakdown. Hence they are widely studied. However,
the physical mechanism of their instabilities, when density variations are present, are not gener-
ally discussed. Moreover, Di Pierro & Abid (2012) have pointed out that, in a variable density
swirling flow there are ingredients for the development of two fundamental instabilities: the
Rayleigh–Taylor instability due to density variations and Taylor–Couette instability due to differ-
ential rotation. Furthermore it is pointed out that the Rayleigh–Taylor instability is characterized
by “bubbles" for positively buoyant fluids and “spikes" for negatively buoyant fluids. It may
be noted here that the instability of swirling flows of homogeneous fluid has been studied in
Le Dizès (2000) with respect to azimuthal disturbances where a nonlinear critical layer analy-
sis has been developed. Moreover, in the recent work of Maslowe & Nigam (2008) linear and
nonlinear stability of homogeneous swirling flows with respect to general three dimensional
disturbances has been studied. In the linear analysis they have studied the radial variation of
the Reynolds stress and found that the Reynolds stress for neutral modes is proportional to
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r−2 which is different from that of parallel shear flows in which case the Reynolds stress is
a constant. Also it is remarked in Maslowe & Nigam (2008) that smoothly varying angular
velocity profiles are more realistic in some contexts and this fact has also been mentioned in
Spalart (1998).

In the present paper we consider the stability problem of swirling flows with variable density
of inviscid incompressible fluids confined between two infinite concentric cylinders at r = R1
and r = R2 where 0 < R1 < R2 < ∞ with respect to azimuthal disturbances. As stated
earlier some analytical results on this problem were obtained in Fung (1983). These results of
Fung (1983) were obtained by extending the corresponding results of parallel flow theory to
swirling flow context. As is well known the Taylor–Goldstein problem of hydrodynamic sta-
bility deals with stability of density stratified shear flows of incompressible, inviscid fluid (see,
for example, Drazin & Reid (1981)). A seminal work on this problem is Miles (1961). In this
paper Miles proved that a necessary condition for instability is that the (local) Richardson num-
ber must be less than one quarter somewhere in the flow domain. However the proof of this
result was restricted to velocity and density profiles that are analytic functions of the verti-
cal coordinate variable. Howard (1961) gave a proof of this result without these restrictions,
and this result is known as the Miles–Howard theorem. Another interesting result of Howard
(1961) is his semicircle theorem according to which the complex phase velocity of unstable
modes should lie inside a semicircle in the upper half-plane. Noticing that Howard’s semicircle
does not depend on the stratification parameter Kochar & Jain (1979) proved their semi-ellipse
theorem giving an instability region that depends the minimum Richardson number and lying
inside Howard’s semi-circle. Fung’s results mentioned earlier are extensions of these results
to swirling flows. However Miles (1961) contains many more interesting results that have not
been extended to swirling flows. In particular Miles (1961) classified the neutral modes into two
classes, namely, the neutral modes that are contiguous to unstable modes and consequently lie
on the stability boundary and the isolated modes. As he found that only singular neutral modes
can lie on the stability boundary these modes were studied by him in detail. Another aspect of
the problem studied by him is the Reynolds stress that transfers energy from the basic flow to
the disturbance. As the Taylor–Goldstein equation is a second order ordinary differential equa-
tion Miles (1961) found two linearly independent solutions around the critical layer at which the
phase velocity of wave equals the basic flow velocity. These solutions were subsequently used
by him to study the Reynolds stress and its variation. In particular it is seen that the Reynolds
stress is a constant for neutral modes when the basic parallel flow is monotonic. An important
result of Miles (1961) is that singular neutral modes do not exist if the value of the Richardson
number at the critical layer exceeds one quarter. It may be remarked here that these results of
Miles (1961) play important roles in the linear viscous critical layer theory (see, for example,
Maslowe & Spiteri (2013)) and in the nonlinear critical layer theory (see, for example, Kelly
& Maslowe 1970)). In particular Maslowe & Spiteri (2013) have found that a neutral mode
can change the velocity profile of the basic flow and consequently its stability properties and
that this conclusion is obtained by studying the variation of the Reynolds stress in the critical
layer.

Now we state the problem that is being studied in the present paper. The main aspect of the
problem discussed in this paper is the variation of Reynolds stress and the existence of neutral
modes. As mentioned earlier this aspect has been discussed in Maslowe & Nigam (2008) for
the special case of the stability of homogeneous flows but with the general case of three dimen-
sional disturbances. But the Richardson number defined in their paper depends on the axial wave
number and not just on the basic flow variables. In our paper we consider the more general case
of density stratified swirling flows with two-dimensional disturbances. The Richardson number
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here is J = �2(Dρ0)

ρ0r(D�)2 as defined in Fung (1983) and it depends only on the basic flow variables.
In the stability analysis of density stratified parallel shear flows of inviscid incompressible fluids
Miles (1961) has shown that the Reynolds stress is a constant for neutral modes. In the present
paper we show that the Reynolds stress for neutral azimuthal modes varies like r−2 for variable
density fluids also. The point r = rc where � − c = 0 is called a critical layer that is the layer
in flow region where the phase velocity of the neutral azimuthal mode equals the basic angular
velocity. And it is shown here that the algebraic sum of the jumps in the Reynolds stress across
critical layers is zero. Consequently there is no jump in the Reynolds stress across the critical
layer for basic swirling flows with monotone angular velocity profiles. Moreover we find the
Frobenius series solution of the stability equation and also use them to show that singular neutral
modes do not exist when Jc > 1

4 where Jc = J (rc) is the value of the Richardson number at a
critical layer. This result is analogous to the corresponding result of Miles (1961) on the stability
problem of density stratified parallel shear flows.

It may be observed here that the results of the present study; except for the one on the radial
variation of the Reynolds stress for neutral modes, largely resemble those of Miles (1961).
However, the current study and the one by Miles (1961) are for different flow configurations;
swirling and parallel shear flows, respectively. The reason for this resemblance of the results is

the analogy between the centrifugal acceleration V 2

r
and the gravitational acceleration, in den-

sity stratified fluids. This analogy was originally observed by Rayleigh (cf. Howard & Gupta
1962) and it has been exploited by Howard & Gupta (1962) in the stability analysis of swirling
flows, when an axial velocity is also present, with respect to axisymmetric disturbances. When
one considers only the azimuthal disturbances, as done in the present paper, the axial velocity
does not play any role (see Howard & Gupta 1962) and one has the stability equation of Fung &
Kurzweg (1975).

2. Eigenvalue problem

The linear stability problem of inviscid incompressible but density stratified swirling flows
between two infinite concentric co-axial cylinders at r = R1, R2 where 0 < R1 < R2 < ∞
with respect to azimuthal disturbances of the form (function of r)eim(θ−ct) is given by an eigen
value problem consisting of a second order ordinary differential equation of Fung & Kurzweg
(1975). The Fung & Kurzweg (1975) equation is given in terms of the unknown û(r) where
û(r)eim(θ−ct) is the axial disturbance velocity. If φ(r)eim(θ−ct) is the disturbance streamfunction
then it is related to the disturbance axial velocity by the relation φ(r) = irû(r)

m
and the Fung &

Kurzweg (1975) equation gives stability equation

ρ0

(
D∗D − m2

r2

)
φ + (Dρ0)(Dφ) +

{
�2(Dρ0)

r(� − c)2
− D(ρ0Z)

r(� − c)

}
φ = 0, (2.1)

where Z = rD� + 2� is the basic vorticity, the operator D∗ is defined to be D∗ = D + 1
r
, and

the boundary conditions are

φ = 0 at r = R1, R2. (2.2)

In this equation the azimuthal wave number ‘m’ appears as m2 and so we can take m > 0 without
loss of generality.
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3. Reynolds stress and neutral modes

Here we are considering, as stated in the introduction, the motion of an inviscid incom-
pressible but density stratified fluid between concentric cylinders of radii R1 and R2 with
0 < R1 < R2 < ∞. The basic flow has velocity (0, V (r), 0), pressure P0(r) and density ρ0(r),

where the pressure is related to the velocity and density through the relation dP0
dr

= ρ0(
V 2

r
).

We consider the disturbed flows to be given by the velocity (u, V + v, 0), pressure P0(r) + p,

and density ρ0(r) + ρ. If the disturbances are infinitesimal and azimuthal then the disturbance
variables satisfy the following equations:

r-momentum equation

ρ0

(
∂u

∂t
+ V

r

∂u

∂θ
− 2V

r
v

)
− V 2

r
ρ = −∂p

∂r
, (3.1)

θ-momentum equation

ρ0

(
∂v

∂t
+ u

dV

dr
+ V

r

∂v

∂θ
+ V

r
u

)
= −1

r

∂p

∂θ
, (3.2)

incompressible equation

∂u

∂r
+ u

r
+ 1

r

∂v

∂θ
= 0, (3.3)

continuity equation

∂ρ

∂t
+ u

dρ0

dr
+ V

r

∂ρ

∂θ
= 0. (3.4)

A fluid flow is incompressible when the volume of any moving portion of fluid is constant and
this is equivalent to the condition of zero divergence of the fluid velocity ; (3.3) follows from this.
The equation of continuity follows from the conservation of mass principle, by which the mass
of any moving portion of fluid is constant ; for an incompressible flow this reduces to the fact
that the density of a fluid particle in motion is a constant, and (3.4) follows.

Multiply Eq. (3.1) by ru, multiply Eq. (3.2) by rv, add them and then integrate the resultant
equation to get the equation,∫ ∫

ρ0

[
∂

∂t
+ �

∂

∂θ

] (
u2 + v2

2

)
rdrdθ −

∫ ∫
ρr�2urdrdθ

+
∫ ∫

ρ0rD�uvrdrdθ = −
∫ ∫ (

r
∂(up)

∂r
− rp

∂u

∂r
+ ∂(vp)

∂θ
− p

∂v

∂θ

)
drdθ. (3.5)

The second term in the first integral is∫ ∫
ρ0�

∂

∂θ

(
u2 + v2

2

)
rdrdθ =

∫
ρ0�

(∫
∂

∂θ

u2 + v2

2
dθ

)
rdr

=
∫

ρ0�

(
u2 + v2

2

)θ0+ 2π
m

θ0

rdr

= 0 (by periodicity in θ).



1918 H Dattu and M Subbiah

Thus Eq. (3.5) becomes∫ ∫
ρ0

[
∂

∂t

(
u2 + v2

2

)]
rdrdθ −

∫ ∫
ρr�2urdrdθ +

∫ ∫
ρ0rD�uvrdrdθ

= −
∫ ∫ (

r
∂(up)

∂r
+ ∂

∂θ
(vp)

)
drdθ +

∫ ∫
pr

(
∂u

∂r
+ 1

r

∂v

∂θ

)
drdθ

(3.6)

But from Eq. (3.3) we have ∂u
∂r

+ 1
r

∂v
∂θ

= −u
r

, and use of this in the above equation gives∫ ∫
ρ0

[
∂

∂t

(
u2 + v2

2

)]
rdrdθ −

∫ ∫
ρr�2urdrdθ +

∫ ∫
ρ0rD�uvrdrdθ

= −
∫ ∫ (

r
∂(up)

∂r
+ up

)
drdθ −

∫ ∫
∂

∂θ
(vp))drdθ. (3.7)

Now using boundary conditions and periodicity in θ we see that the right-hand side vanishes and
so we have∫ ∫

ρ0

[
∂

∂t

(
u2 + v2

2

)]
rdrdθ −

∫ ∫
ρr�2urdrdθ +

∫ ∫
ρ0rD�uvrdrdθ = 0. (3.8)

Since Dρ
Dt

= 0 the density of fluid layer at r at present is equal to the basic flow density at r − η

where η is the displacement of a fluid layer in the radial direction; that is,

ρ0(r) + ρ(r, θ, t) = ρ0(r − η)

= ρ0(r) + (Dρ0)(r)(−η) + ..... (3.9)

Under linearization this gives the following relation between the perturbation density and the
displacement of the fluid layer:

ρ = −(Dρ0)η. (3.10)

Moreover, the radial component of the disturbance velocity is given by

u =
(

∂

∂t
+ �

∂

∂θ

)
η. (3.11)

Using (3.10) and (3.11) in (3.8) we have the following equation:

d

dt

∫ ∫
ρ0

[(
u2 + v2

2

)
+ r�2 (Dρ0)

ρ0

η2

2

]
rdrdθ = −

∫ ∫
ρ0(D�)uvr2drdθ

=
∫

τ(D�)r2dr (3.12)

where,

τ = − m

2π

∫ θ0+ 2π
m

θ0

ρ0uvdθ, (3.13)

is the Reynolds stress.
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Thus it is seen that the transfer of energy from the mean flow to a growing disturbance is done
by the Reynolds stress.

Now we shall discuss the solution of the stability equation (2.1).
Equation (2.1) can be rewritten as

ρ0

(
D2φ + Dφ

r
− m2φ

r2

)
+ (Dρ0)(Dφ) +

{
�2(Dρ0)

r(� − c)2
− D(ρ0Z)

r(� − c)

}
φ = 0, (3.14)

Use the transformation φ = X√
rρ0

to get the equation in the normal form; that is,

D2X +
{

1 − 4m2

4r2
+ (Dρ0)

2

4ρ2
0

− Dρ0

2rρ0
− D2ρ0

2ρ0
+ �2(Dρ0)

ρ0r(� − c)2
− D(ρ0Z)

rρ0(� − c)

}
X = 0.

(3.15)
Let r = rc be a point where � = c. Then Frobenius series solutions of Eq. (3.15) are of the form

X±(r) = (r − rc)
1±ν

2 w±(r), (3.16)

where ν = √
1 − 4Jc, Jc =

(
�2(Dρ0)

ρ0r(D�)2

)
r=rc

and the analytical functions w±(r) are given by

w±(r) = 1 +
{
J

(D2�)

(D�)
− 2JD�

�
− J

(D2ρ0)

Dρ0
+ J

r
+ D(ρ0Z)

(D�)ρ0r

}
rc

r − rc

1 ± ν
+ ....., (3.17)

where (� − c) = (c − �)e∓iπ , (D�)c ≷ 0 are two branches and w∗+ = w∗− stands for complex
conjugation. Actually we take r − rc = |r − rc| when r > rc and r − rc = −|r − rc| when
r < rc. Here we consider neutral modes that are limits of unstable modes and for unstable modes
ci > 0. So we have to take −1 = e∓iπ according as (D�)c ≷ 0.

The Wronskian of the solutions (3.16) at r = rc is given by

W {X+, X−} = X+DX− − X−DX+ = −ν (3.18)

and it is seen that the two solutions are linearly independent if ν �= 0; that is when Jc �= 1/4.
Also the conjugate functions are given by

X∗±(r) = X±(r)eiπ(1±ν)S(r−rc), Jc < 1
4

X∗±(r) = X∓(r)eπ(i±μ)S(r−rc), Jc > 1
4

}
, (3.19)

where μ = −iν and the function S(r − rc) is defined to be

S(r − rc) =
{

0 for r > rc,

±1 if(D�)c ≶ 0 for r < rc.
(3.20)

Since the perturbation streamfunction is φ(r)eim(θ−ct) the disturbance velocity components are
given by

u = imφ
r

eim(θ−ct) = imr
−3
2 ρ

−1
2

0 Xeim(θ−ct),

v = −(Dφ)eim(θ−ct) = −[D
(

r
−1
2 ρ

−1
2

0

)
X + r

−1
2 ρ

−1
2

0 (DX)]eim(θ−ct).

⎫⎪⎬
⎪⎭ . (3.21)
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Noting that the velocity variables are given by the real part of those given in (3.21), we see that
the Reynolds stress is given by

τ = −im

4r2
(X(DX∗) − X∗(DX))e2mci t ,

= m

r2
(X∗(DX))ie

2mci t , (3.22)

where (.)i denotes imaginary part of the quantity inside the bracket.
It follows that

∂

∂r
(r2τ) = im

4
(X(D2X∗) − X∗(D2X))e2mci t , (3.23)

i.e
∂

∂r
(r2τ) = m

2
(X∗(D2X))ie

2mci t . (3.24)

But from Eq. (3.15) we have

D2X = −
{

1 − 4m2

4r2
+ (Dρ0)

2

4ρ2
0

− Dρ0

2rρ0
− D2ρ0

2ρ0
+ �2(Dρ0)

ρ0r(� − c)2
− D(ρ0Z)

rρ0(� − c)

}
X, (3.25)

and taking the complex conjugate of the above equation gives

(D2X∗) = −
{

1 − 4m2

4r2
+ (Dρ0)

2

4ρ2
0

− Dρ0

2rρ0
− D2ρ0

2ρ0
+ �2(Dρ0)

ρ0r(� − c∗)2
− D(ρ0Z)

rρ0(� − c∗)

}
X∗.

(3.26)
Using (3.25)and (3.26) in Eq. (3.24) we have

∂

∂r
(r2τ) = mci

2ρ0

{
D(ρ0Z)

|� − c|2 − 2(Dρ0)�
2(� − cr)

|� − c|4
}

|X|2e2mci t . (3.27)

For neutral modes it follows that the right-hand side of (3.27) becomes zero and we have τ = τ0
r2

where τ0 is a constant. This r−2 behavior of τ contrasts with the case of parallel shear flow,
where τ = constant (cf. Drazin & Reid 1981; Miles 1961).

Remark 3.1. For homogeneous fluids for which ρ0 = constant this behavior of the Reynolds
stress has been obtained in Maslowe & Nigam (2008).

For monotonic angular velocity profiles � = c only at one point and since

τ(R1) = 0 = τ(R2), (3.28)

we have the following theorem.

Theorem 3.2. For monotonic angular velocity profiles �(r) the Reynolds stress for any neutral
mode vanishes identically in the flow domain.

If the angular velocity is not monotonic then it is possible that � = c at more than one value of
r and in this case τ can become discontinuous at these layers.
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Now we pose general solution to Eq. (3.15) in the form

X = AX+ + BX−, (3.29)

where A and B are constants, and for neutral modes substituting this in (3.22) we obtain

τ = m

2r2
(|A|2DX+X∗+ + |B|2DX−X∗− + AB∗DX+X∗− + A∗BX∗+DX−)i . (3.30)

If Jc < 1
4 , then

(DX+)X∗− = ((DX+)X∗−)eiπ(1+ν)S

= (ν + X+(DX−))∗e−iπ(1+ν)S(from (3.18))
= νe−iπ(1+ν)S + X+(DX∗−). (3.31)

Using this along with the first equation of (3.19), Eq. (3.30) reduces to

τ = mν

2r2
{AB∗e−iπ(1+ν)S}i;

(
Jc <

1

4

)
. (3.32)

Similarly we can obtain for Jc > 1
4 the following relation:

τ = mμ

4r2
{|A|2eπ(i+μ)S − |B|2eπ(i−μ)S};

(
Jc >

1

4

)
. (3.33)

Using the boundary conditions (3.28) on (3.32) we have either A = 0 or B = 0 and hence we
have the following theorem.

Theorem 3.3. For a singular neutral mode X must be simply proportional to either X+ or X−
when 0 < Jc < 1

4 .

Similarly from (3.33) we have the following theorem.

Theorem 3.4. Singular neutral modes cannot exist for monotonic �(r) if Jc > 1
4 in [R1, R2].

The above results on the existence of singular neutral modes are the swirling flow extensions of
the corresponding results of Miles (1961). It has been shown in Dattu & Subbiah (2014b) that the
series solutions presented above play important roles in the nonlinear critical layer analysis of
swirling flows with variable density. However the above results on the Reynolds stress are similar
to the corresponding results of Maslowe & Nigam (2008). The main difference between our
results and those of Maslowe & Nigam (2008) is that our results are for basic flows with variable
density while those of Maslowe & Nigam (2008) are for constant density flows. Consequently
the Richardson number considered in our paper is very different from that considered in Maslowe
& Nigam (2008). Now we shall derive a formula for the jump in the Reynolds stress across a
critical layer which has not got a corresponding result in Maslowe & Nigam (2008).

Integrating Eq. (3.27) from rc − ε to rc + ε we have

(r2τ)
rc+ε
rc−ε =

∫ rc+ε

rc−ε

mci

2ρ0

{
D(ρ0Z)

|� − c|2 − 2(Dρ0)�
2(� − cr)

|� − c|4
}

|X|2e2mci t dr.
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Consequently the jump in r2τ denoted by [r2τ ]rc is given by

[r2τ ]rc = lim
ε→0

lim
ci→0+

∫ rc+ε

rc−ε

mci

2ρ0

{
D(ρ0Z)

|� − c|2 − 2(Dρ0)�
2(� − cr)

|� − c|4
}

|X|2e2mci t dr

= lim
ε→0

lim
ci→0+

me2mci t

2

∫ rc+ε

rc−ε

{
D(ρ0Z)

ρ0
− 2(Dρ0)�

2(�−cr)

ρ0((�−cr)2+c2
i )

}
|X|2dr

ci

(
1+ (�−cr )2

c2
i

)

= lim
ε→0

lim
ci→0+

me2mci t

2

∫ rc+ε

rc−ε

{
D(ρ0Z)

ρ0
− 2(Dρ0)�

2(� − cr)

ρ0((� − cr)2 + c2
i )

}

×
d

(
tan−1

(
�−cr

ci

))
|X|2

(D�)
dr

= lim
ε→0

lim
ci→0+

me2mci t

2

⎡
⎢⎢⎣

⎛
⎜⎜⎝D(ρ0Z)

ρ0D�
− 2(Dρ0)�

2

ρ0(D�)2

(
1 + c2

i

(�−cr )2

)
⎞
⎟⎟⎠ |X|2

⎤
⎥⎥⎦

rc

×
∫ rc+ε

rc−ε

d

(
tan−1

(
� − cr

ci

))
dr

(by the use of the first mean value theorem for Riemann stieltjes integral).
This gives the following result.

Theorem 3.5. For non-monotonic angular velocity profiles the jump in the Reynolds stress
across a critical layer is given by

[r2τ ]rc = mπ

2

{[
D(ρ0Z)

ρ0
− 2(Dρ0)�

2

ρ0(D�)

]
|X|2

}
rc

1

(D�)csgn(D�)c
, (3.34)

where

sgn(D�)c =
{ +1 if (D�)c > 0,

−1 if (D�)c < 0.

4. Concluding remarks

The stability of swirling flows of inviscid, incompressible fluids with radius dependent density
was initiated in Fung & Kurzweg (1975). In Fung (1983) the Richardson number for swirling
flows with velocity (0, V (r), 0) and density ρ0(r) was defined and general analytical result,
namely, a necessary condition for instability is that the Richardson number should be less
than one quarter at least once was derived. This result is the swirling flow equivalent of the
Miles–Howard theorem of the parallel flow theory. Moreover the semicircular and semiellipti-
cal instability theorems of the parallel flow theory were also extended in Fung (1983). It was
noticed that in contrast to the parallel flow results these instability results are valid only for flows
satisfying the condition abDρ0 ≥ 0. Recently this problem has attracted the attention of some
researchers because of the importance of this problem in the evolution of aircraft trailing vortices
(see, for example, Dixit & Govindarajan (2011) and Di Pierro & Abid (2012)). These works on
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this problem focus on obtaining numerical and asymptotic results. Our interest in the present
paper is to obtain general analytical results on this problem. In particular we have extended some
results of Miles (1961) to the swirling flow context. We have found series solutions of the Fung
and Kurszweg equation. The role of the Reynolds stress in transferring energy from the basic
flow to the azimuthal disturbance is identified and the variation of the Reynolds stress for neutral
modes is studied. It is found that the this variation is similar to the homogeneous swirling flow
result of Maslowe & Nigam (2008) whereby it is seen that the Reynolds stress varies like the
inverse square of the radial distance than being a constant as in the parallel flow case. Finally it
is proved in our paper that singular neutral modes do not exist when the Richardson number at
the critical layer is greater than one quarter.

For density stratified parallel flows a viscous critical layer analysis has been developed
recently in Maslowe & Spiteri (2013) and the important role played by the Reynolds stress in
the transfer of energy from a neutral mode to the basic shear flow is identified. They have also
considered the critical layer analysis of swirling flows. However their swirling flow study is
restricted to homogeneous flows only, but the disturbances considered are general three dimen-
sional ones and not just the azimuthal ones. Still they have defined a Richardson number in this
context which depends on the axial wave number. It is found that the role of the critical layer sin-
gularities of the linear inviscid stability equation and their effect on the variation of the Reynolds
stress are significant in the computation of the neutral eigen functions. Moreover it is observed
that the variation of the Reynolds stress would modify the azimuthal velocity profile and thereby
change its stability properties.

For variable-density swirling flows a nonlinear critical analysis has been developed in Dattu
& Subbiah (2014b). It is found that the thickness of the nonlinear critical layer depends on the
amplitude of the perturbation and the Reynolds number. The density variation of the basic flow
enters the analysis through Jc, the value of the Richardson number at the critical layer. The main
result of the nonlinear critical layer analysis is that the wave-induced vorticity inside the cell
around the critical is a nonzero constant, in contrast to the homogeneous case where it is zero. It
should be remarked here that the series solutions found in the present paper play a major role in
the nonlinear critical layer analysis of swirling flows with variable-density.
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