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Abstract. A linear time method to decide if any inverse maximum flow (denoted
General Inverse Maximum Flow problems (IMFG)) problem has solution is deduced.
If IMFG does not have solution, methods to transform IMFG into a feasible problem
are presented. The methods consist of modifying as little as possible the restrictions
to the variation of the bounds of the flow. New inverse combinatorial optimization
problems are introduced and solved.
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1. Introduction

An inverse combinatorial optimization problem consists of modifying some parameters of a
network such as capacities or costs so that a given feasible solution of the direct optimization
problem becomes an optimal solution and the distance between the initial vector and the modi-
fied vector of parameters is minimum. Different norms such as l1, l∞ and even l2 are considered
to measure this distance. Many papers were published in the field of inverse combinatorial opti-
mization (Heuberger 2004). Almost every inverse problem was studied considering l1 and l∞
norms, resulting in different problems with completely different solution methods. A strongly
polynomial time algorithm to solve the inverse maximum flow problem under l1 norm (denoted
IMF) is presented by Yang et al (1997). IMF is reduced to a minimum cut problem in an auxiliary
network with finite and infinite arc capacities. The algorithm for IMF has an O(n ·m ·log(n2/m))

time complexity, where m is the number of arcs and n is the number of nodes. IMF can not be
solved using weakly polynomial algorithms (although sometimes they can be preferred) because
the minimum cut is searched in a network with some arcs having infinite capacities.

The more general inverse maximum flow problem (denoted GIMF) under l1 norm, where the
lower and upper bounds for the flow are changed, is studied by Deaconu (2008b). Strongly and
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weakly polynomial algorithms to solve GIMF are proposed. The strongly polynomial algorithms
for GIMF have the same time complexity as the algorithm for IMF, but the minimum cut is
searched in a network with fewer arcs. The weakly polynomial algorithms for GIMF have an
O(min{n2/3, m1/2}·m ·log(n2/m)·log(max{n, R})) time complexity, where R = max{c(i, j)−
x(i, j) + x( j, i) − l( j, i)|i, j ∈ N }.

Deaconu (2008a) considered the inverse maximum flow problem under l∞ norm. A very fast
O(m · log(n)) time algorithm to solve this problem is presented.

The least number of modifications to the lower or/and upper bounds is considered by Deaconu
(2006). An O(min{n2/3, m1/2} · m) time algorithm for solving this problem is presented.

Four inverse maximum flow problems are also studied by Liu & Zhang (2006) under the sum-
type and bottleneck-type weighted Hamming distance. Strongly polynomial algorithms to solve
these problems are proposed.

We introduce a new category of inverse problems. We shall call these problems as inverse fea-
sibility problems. An inverse feasibility problem is defined on a non-feasible problem. It consists
of modifying some parameters as little as possible of a network so that the initial non-feasible
problem with the modified parameters becomes feasible. In this paper, we study the inverse
feasibility problems of the inverse maximum flow problems.

2. The inverse maximum flow problems

Let G = (N , A, l, c, s, t) be an s-t network, where N is the set of nodes, A is the set of directed
arcs, l and c are the lower and, respectively, the upper bound vectors for the flow, s is the source
and t is the sink node.

Let x be a given feasible flow in the network G. It means that x has to satisfy the flow balance
condition and the capacity restrictions. The balance condition for the flow x is:

∑
j∈N ,(i, j)∈A

x(i, j) −
∑

j∈N ,( j,i)∈A
x( j, i) =

⎧
⎨

⎩

v(x), i = s
−v(x), i = t

0, i ∈ N − {s, t}
, (1)

where v(x) is the value of x from s to t.
The capacity restrictions are:

l(i, j) ≤ x(i, j) ≤ c(i, j), ∀ (i, j) ∈ A, (2)

where c(i, j) ≥ l(i, j) ≥ 0, for every arc (i, j) ∈ A.
The maximum flow problem is:

{
max v(x)

x is a feasible flow in G.
(3)

We shall introduce now the definition of the minimum s-t cut in the network G. The set of
arcs [S, S̄] = (S, S̄) ∪ (S̄, S) is called an s-t cut in G if S ∩ S̄ = φ, S ∪ S̄ = N , s ∈ S and
t ∈ S̄, where (S, S̄) = {(i, j) ∈ A|i ∈ S and j ∈ S̄} is the set of direct arcs of the cut and
(S̄, S) = {(i, j) ∈ A|i ∈ S̄ and j ∈ S} is the set of the inverse arcs. The capacity of the s-t cut
[S, S̄] in G is c[S, S̄] = c(S, S̄) − l(S̄, S) = ∑

(i, j)∈(S,S̄) c(i, j) − ∑
(i, j)∈(S̄,S) l(i, j). An s-t cut

is a minimum cut in G if its capacity is minimal in the set of s-t cuts of the network G.
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In order to introduce the definition of the residual network, by convention, if (i, j) ∈ A and
( j, i) /∈ A then we add the arc ( j, i) to the set of arcs A and we set l( j, i) = 0 and c(i, j) = 0.

We define the residual capacity attached to the network A for the flow x as follows:

r(i, j) = c(i, j) − x(i, j) + x( j, i) − l( j, i), ∀(i, j) ∈ A. (4)

The residual network attached to the network G for the flow x is Gx = (N , Ax , r, s, t), where
the set Ax contains the arcs (i, j) with positive residual capacity, i.e., r(i, j) > 0. In the residual
network the lower bounds are all equal to 0.

An inverse maximum flow problem is to change as little as possible the bound vectors l and c
so that the given feasible flow x becomes a maximum flow in G.

An inverse maximum flow problem (denoted IMFG) can be formulated using the following
mathematical model:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min dist ((l, c), (l̄, c̄))

x is a maximum flow in Ḡ = {N , A, l̄, c̄, s, t}
l̄(i, j) ≤ min{c̄(i, j), l(i, j) + β(i, j)}, ∀ (i, j) ∈ A

c(i, j) − δ(i, j) ≤ c̄(i, j), ∀ (i, j) ∈ A

. (5)

In the model (5) different formulas to measure the distance between (l, c) and (l̄, c̄) are
considered, such as (weighted) l1 norm, (weighted) l∞ norm, the (weighted) sum-type or
bottleneck-type Hamming distance, etc.

The values β(i, j) and δ(i, j) are given non-negative numbers, where δ(i, j) ≤ c(i, j), for
each arc (i, j) ∈ A. These values show how much the bounds of the flow on the arcs can vary. In
order to make the feasible flow x a maximum flow in the network G, the upper bounds of some
arcs from A must be decreased and/or the lower bounds of some arcs from A must be increased.
So, there is no need to impose upper limitations to the variation of c̄(i, j) and it is also useless
to have lower limitations to the variation of l̄(i, j).

In the formula (5) by (l, c) is denoted by the vector obtained by adding the components of the
vector c at the end of l. Similarly, (l̄, c̄) is the vector obtained by putting together the components
of the vectors l̄ and c̄.

The inverse maximum flow problems with no lower bounds is a particular cases of IMFG.
Indeed, in this case the lower bounds of the flow are equal to 0 and they can not be modified in
order to transform the given flow x into a maximum flow and, so, for this particular case in (5)
we can consider β(i, j) = 0, ∀(i, j) ∈ A.

3. The feasibility of IMFG

For solving IMFG we need to determine the arcs in the network G on which the lower and upper
bounds will not be changed.

First, as it has been seen, changing the upper bound have no effect on an arc (i, j) with
c(i, j) > x(i, j)+ δ(i, j). So, there is no need to try changing the upper bounds of the arcs from
the following set:

Ã1 = {(i, j) ∈ A |x(i, j) + δ(i, j) < c(i, j) }. (6)
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There is also no need to change the lower bounds of the arcs from the following set:

Ã2 = {(i, j) ∈ A |l(i, j) + β(i, j) < x(i, j) }. (7)

The graph G̃ = (N , Ã) can be constructed to verify the feasibility of IMFG, where:

Ã = Ã1 ∪ {(i, j) ∈ N × N |( j, i) ∈ A and x( j, i) > l( j, i) + β( j, i) }. (8)

Theorem 1 (feasibility of IMFG): In the network G, IMFG has optimum solution for the given
flow x, if and only if there is no directed path in the graph G̃ from the source node s to the sink
node t.

Proof. Let G ′ = (N , A, l ′, c′) be a network for which the last conditions from (5) hold: l(i, j) ≤
l ′(i, j) ≤ min{c′(i, j), l(i, j) + β(i, j)} and c(i, j) − δ(i, j) ≤ c′(i, j), ∀(i, j) ∈ A. Let G ′

x =
(N , A′

x , r ′) be the residual network attached to the network G ′ for the flow x . It is easy to see
that r ′(i, j) > 0, ∀(i, j) ∈ Ã due to the restriction on the upper bound vector for the arc (i, j)
of G (c(i, j) > x(i, j) + δ(i, j) ⇒ c′(i, j) > x(i, j) if (i, j) ∈ A ∩ Ã) or because (i, j) ∈ Ã,
( j, i) ∈ A, x( j, i) > l( j, i) + β( j, i) ⇒ x( j, i) > l ′( j, i). This means that Ã ⊆ A′

x .
If IMFG is a feasible problem, then it means that there is a vector (l̄, c̄) with l̄(i, j) ≤

min{c̄(i, j), l(i, j) + β(i, j)} and c(i, j) − δ(i, j) ≤ c̄(i, j), ∀(i, j) ∈ A and for which the flow
x is a maximum flow in the network Ḡ = (N , A, l̄, c̄). Since Ã ⊆ Āx , if it exists a directed path
in G̃ from s to t, it corresponds to a directed path in Ḡx , which leads to an augmentation to the
flow x in G (contradiction).

Now, for the inverse implication we construct the following upper and lower bound vectors
for the arcs of the network G:

c′′(i, j) =
{

c(i, j), if c(i, j) > x(i, j) + δ(i, j)

x(i, j), otherwise

l ′′(i, j) =
{

l(i, j), if x(i, j) > l(i, j) + β(i, j)

x(i, j), otherwise

It is easy to see that l ′′(i, j) ≤ l(i, j) + β(i, j) and c(i, j) − δ(i, j) ≤ c′′(i, j), ∀(i, j) ∈ A.
In the residual network G ′′

x = (N , A′′
x , r ′′) attached to G ′′ = (N , A, l ′′, c′′) and for the flow x

we have r ′′(i, j) = 0, for all (i, j) ∈ (N × N ) − Ã. Since Ã ⊆ A′′
x , it means that Ã = A′′

x (see
(4)). Therefore, because there is no path from s to t in the graph G̃, it results that there is no
directed path from s to t in G ′′

x . This implies that the flow x is a maximum flow in the network
G ′′ = (N , A, l ′′, c′′). It means that (l ′′, c′′) is a feasible solution for IMFG.

In IMFG, the feasible region for the vector (l̄, c̄) can be reduced to l ≤ l̄ ≤ l̄ + β and
c − δ ≤ c̄ ≤ c (from (5) and because when solving IMFG there is no need to increase the upper
bounds of the flow and there is no need to decrease the lower bounds of the flow), which is a
compact region. So, because IMFG has a feasible solution, it results that IMFG has optimum
solution. �

The verification of IMFG being feasible can be done in O(m̃) time complexity, using a graph
search algorithm in G̃, where m̃ is the number of arcs in the set Ã with m̃ ≤ 2m.
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4. Inverse feasibility problems of IMFG

As we have seen in the privious section, the inverse maximum flow problems do not have always
optimum solution. In this section, we shall study the problem of modifing the restrictions to the
lower and upper bound (β and γ ) as little as possible in order to transform the unfeasible IMFG
into a feasible problem. So, we shall introduce new inverse combinatorial optimization problems
(denoted TRIMF). The mathematical model for these problems is:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min dist ((β, δ), (β̄, δ̄))

β̄ ≥ 0

δ̄ ≥ 0

IMFG with the bound restrictions β̄ and δ̄

is feasible in G for x

(9)

In this paper, the following formulas to measure the distance between the initial restriction
vector of the bound variation (β, δ) and the modified one (β̄, δ̄) will be considered: weighted lk
norm with k ≥ 1, weighted l∞ norm, sum-type and bottleneck-type Hamming distance.

We shall consider the network G being anti-symmetric without reducing the generality of
TRIMF, i.e., (i, j) ∈ A ⇒ ( j, i) /∈ A. If a network is not antisymmetric, then it can be easily
transformed into an antisymmetric network.

As we have seen in theorem 1, only the arcs of Ã from G̃ are responsable for IMFG being
unfeasible. These arcs correspond to arcs from the set Ã1 ∪ Ã2 in G (see (6) and (7)). So,
for an arc (i, j) ∈ Ã1 if the upper bound restriction δ(i, j) is modified to be greater or equal
to c(i, j) − x(i, j), then the arc (i, j) leaves the set Ã1. Similarly, for an arc (i, j) ∈ Ã2 if
the lower bound restriction β(i, j) is modified to be greater or equal to x(i, j) − l(i, j), then
the arc (i, j) leaves the set Ã2. So, it is enough for an arc (i, j) ∈ Ã to increase the value
of δ with c(i, j) − x(i, j) − δ(i, j) (if (i, j) ∈ Ã1) in order to eliminate (i, j) from Ã or,
respectively, to decrease the value of β with x( j, i)− l( j, i)−β( j, i) (if ( j, i) ∈ Ã2) in order to
eliminate (i, j) from Ã. Starting from this observation we construct the following vector defined
for the arcs of Ã in order to start studying the possibility of transforming IMFG into a feasible
problem:

λ(i, j) =
{

c(i, j) − x(i, j) − δ(i, j),if (i, j) ∈ Ã1

x( j, i) − l( j, i) − β( j, i),if ( j, i) ∈ Ã2
. (10)

We shall solve now TRIMF for the weighted lk norm, where k ≥ 1. We shall denote TRIMF1
this problem. The mathematical model for this problem is:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min k
√∑

(i, j)∈A{wβ(i, j) · |β(i, j) − β̄(i, j)|k + wδ(i, j) · |δ(i, j) − δ̄(i, j)|k}
β̄ ≥ 0

δ̄ ≥ 0

IMFG with the bound restrictions β̄ and δ̄ is feasible in

G for x,

(11)

where wβ and wδ are associated modification cost vectors for β and, respectively, δ. Of course,
wβ(i, j), wδ(i, j) ≥ 0, ∀(i, j) ∈ A. Due to the observation that β and δ are modified only on
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arcs of Ã with the quantity given by the vector λ, it results from (10) that, instead of (11), the
following mathematical for TRIMF1 can be considered:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minB⊆ Ã{∑(i, j)∈B∩ Ã1
wβ(i, j) · (λ(i, j))k + ∑

(i, j)∈B,( j,i)∈ Ã2
wδ( j, i) · (λ(i, j))k}

β̄(i, j) = β(i, j), ∀(i, j) ∈ A − Ã1

δ̄(i, j) = δ(i, j), ∀(i, j) ∈ A − Ã2

β̄ ≥ 0

δ̄ ≥ 0

IMFG with the bound restrictions β̄ and δ̄ is feasible in

G for x .

(11′)

We construct the network G̃k = (N , Ã, c̃k), where c̃k is defined as follows:

c̃k(i, j) =
{

wδ(i, j) · (λ(i, j))k,if (i, j) ∈ Ã1

wβ( j, i) · (λ(i, j))k,if ( j, i) ∈ Ã2
. (12)

In order to solve TRIMF1 we have to find the set B ⊆ Ã with the propriety that if the arcs
of B are eliminated from G̃k , then there is no directed path from s to t in G̃k and the sum of
ck capacities of the arcs from B is minimum. It is not difficult to see that B is the set of direct
arcs of the minimum s-t cut of G̃k , i.e., B = (S, S̄), where B = [S, S̄] is the minimum s-t cut
of G̃k . In order to eliminate the arc (i, j) of B ∩ Ã1 from Ã it is necessary and sufficient to set
δ(i, j) = c(i, j) − x(i, j) (see (10)). Similarly, in order to eliminate the arc (i, j) of B from Ã
with ( j, i) ∈ Ã2 it is necessary and sufficient to set β( j, i) = x( j, i) − l( j, i) (see (10)). So, the
optimum solution of TRIMF1 is (β̄, δ̄), where:

β̄(i, j) =
{

x(i, j) − l(i, j),if ( j, i) ∈ (S, S̄) and (i, j) ∈ Ã2

β(i, j),otherwise
, ∀(i, j) ∈ A (13)

δ̄(i, j) =
{

c(i, j) − x(i, j),if (i, j) ∈ (S, S̄) ∩ Ã1

δ(i, j),otherwise
, ∀(i, j) ∈ A. (14)

The algorithm (denoted ATRIMF1) for solving TRIMF1 is:

Construct the network G̃k = (N , Ã, c̃k) (see (8) and (12));
Find the minimum s-t cut [S, S̄] of G̃k ;
Construct β̄ (see (13));
Construct δ̄ (see (14)).

The time complexity of ATRIMF1 is given by the time complexity of finding the minimum
s-t cut in the network G̃k .

One of the today’s best strongly polynomial time complexity algorithms for maximum flow
and the minimum cut is due to Goldberg & Tarjan (1986). If it is applied in the network G̃k , it
has the time complexity of O(n · m̃ · log(n2/m̃)), where n = |N | and m̃ = ∣∣ Ã

∣∣ ≤ 2m.



Inverse feasibility problems of the inverse maximum flow problems 205

One of the today’s best weakly polynomial algorithms for maximum flow and minimum cut
is due to Goldberg & Rao (1998). If it is applied in the network G̃k , it has the time complexity
of O(min{n2/3, m̃1/2} · m · log(n2/m̃) · log(C̃k)), where C̃k = max {̃ck(i, j)|(i, j) ∈ Ã}.

Definition 1 (accesible node): A node j of a graph is called accessible from the node i , if there
is a directed path from i to j .

We shall study now TRIMF under weighted l∞ norm for measuring the distance between
(δ, β) and (δ̄, β̄) in (10). We shall denote TRIMF2 this problem.

The mathematical model for TRIMF2 is:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minmax(i, j)∈A{wβ(i, j) · |β(i, j) − β̄(i, j)|, wδ(i, j) · |δ(i, j) − δ̄(i, j)|}
β̄ ≥ 0

δ̄ ≥ 0

IMFG with restrictions β̄ and δ̄ is feasible in G for x .

(15)

Due to the observation that β and δ are modified only on some arcs of Ã with the quan-
tity given by the vector λ, it results from (10) and (12) that, instead of (15), the following
mathematical for TRIMF2 can be considered:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minH⊆ Ã max{̃c1(i, j)|(i, j) ∈ H}
β̄(i, j) = β(i, j), ∀(i, j) ∈ A − Ã1

δ̄(i, j) = δ(i, j), ∀(i, j) ∈ A − Ã2

β̄ ≥ 0

δ̄ ≥ 0

IMFG with restrictions β̄ and δ̄ is feasible in G for x

(15′)

In order to solve TRIMF2 we have to eliminate the arcs (i, j) from Ã having the minimum
value of c̃1(i, j) and, after the elimination is done, there is no longer a directed path from s to t
in the network G̃. We shall sort descending the arcs of G̃ by their capacities c̃1. After sorting, the
arcs of H (initially H = Ã) are sequentialy eliminated from H and introduced in a set denoted
D (initially being null) till there is a directed path in the graph G D = (N , D) from s to t . The
last arc is not eliminated from H (if it is eliminated from H , then there is a directed path from
s to t in G H = (N , Ã − H)). At the end of the algorithm the set H contains the arcs of Ã that
lead to modifications of the restrictions of bounds on the arcs of G.

In order to eliminate the arc (i, j) of H ∩ Ã1 from Ã it is necessary and sufficient to set
δ(i, j) = c(i, j) − x(i, j) (see (10)). Similarly, in order to eliminate the arc (i, j) of H from Ã
with ( j, i) ∈ Ã2 it is necessary and sufficient to set β( j, i) = x( j, i) − l( j, i) (see (10)). So, the
optimal solution of TRIMF2 is:

δ̄(i, j) =
{

c(i, j) − x(i, j),if (i, j) ∈ H

δ(i, j),otherwise
, ∀(i, j) ∈ A (16)

β̄(i, j) =
{

x(i, j) − l(i, j),if ( j, i) ∈ H

β(i, j),otherwise
, ∀(i, j) ∈ A. (17)
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The algorithm (denoted ATRIMF2) for solving TRIMF2 is:

D := φ;
H := Ã;
W := {s};
Sort descending the arcs from the set H by c̃1;
For (i, j) ∈ H do

If j /∈ W then
D := D ∪ {(i, j)};
If i ∈ W then

Find the nodes W ′ accessible from the nodes of W in
the graph G D = (N , D),eliminating the visited arcs of D;
W := W ∪ W ′;

endif;
endif;
If t ∈ W then

d := r(i, j);
BREAK;

else H := H − {(i, j)};
endif;

endfor;
Construct the vectors β and δ (see (16) and (17));
(β̄, δ̄) is the optimal solution of the TRIMF2 problem.

Theorem 2 (correctness of ATRIMF2): The vector (β̄, δ̄) found by the algorithm is the opti-
mum solution of TRIMF2 and

∥∥(β̄, δ̄) − (β, δ)
∥∥∞ = d, where d is the value obtained in the

algorithm.

Proof. The main idea of the algorithm is to change the capacities c̃1 (by transforming them to 0)
of the arcs from Ã and to leave as many as possible arcs with the greatest capacities unchanged.
The capacities c̃ of the arcs that remain in the set H at the end of the algorithm will be equal to 0
after the bound restrictions will be modified in G using (16) and (17). The algorithm starts with
H = Ã (all the arcs of Ã are candidates for elimination). The arcs from H are sorted descending
by c̃1 and so, they are prepared for elimination from H, starting with the arc with the greatest c̃1
capacity and ending with the arc having the lowest capacity.

We shall explain now the meaning of the sets that appear in the algorithm.
The set D contains arcs with c̃1 capacity that will not be changed (until the last iteration of for

sequence). At the beginning of the algorithm, D is null. Every time accessible nodes from s are
searched, the visited arcs are eliminated from the set D in order to keep the time complexity low.
The search will continue at the point where the last time it was stopped. In this proof, we shall
refer to the set D as being complete (without any elimination of arcs).

At any moment, in the set W there exists only the nodes j which are accessible from s in the
graph G D = (N , D).

The set W ′ contains the nodes which are newly found accessible from s in the graph G D =
(N , D), when the current arc (i, j) enters the set D. After they are found, they are added into the
set W.
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During the for loop, one of the following 2 situations can be found for every arc (i, j) of H:

Situation 1: j /∈ W

This means that the node j was not previously found accessible from s. So, the arc (i, j) is
introduced in the set D. The next time another search will be done in the network G D = (N , D),
this arc will possibly help to find other accessible nodes from s in G D . If the node i is in the set
of accessible nodes from s, then j is also accessible from s in G D and it is possible that other
nodes from N will be found accessible from s. So, the graph search is continued in G D . All
newly found accessible nodes from W ′ will be added into the set W .

Situation 2: j ∈ W

It means that the node j was previously found as being accessible from s in the network
G D = (N , D). In this case it is no need to introduce the arc (i, j) in the set D.

The algorithm ends when the node t enters the set D, becoming accessible from s in the graph
G D =(N , D). The last arc (i, j), which made the node t become accessible, will not leave the set
H. The value of c̃1 capacity of the first arc (i, j)∈ H , with the propriety that t becomes accessible
from s in G D is introduced in the variable d. So, d is the greatest value of the residual capacities
of the arcs that are changed, i.e., d =max {̃c1(u, v) | (u, v) ∈ H}=∥∥(β̄, δ̄)−(β, δ)

∥∥∞. �

Theorem 3 (complexity of ATRIMF2): The algorithm for TRIMF2 has a time complexity of
O(m̃ · log(n)), where n = |N | and m̃ = | Ã|.

Proof. Finding the set W with the nodes accessible from s and the elimination of the visited
arcs from D can be done in linear time - O(m̃), using a graph search algorithm applied in the
graph G D .

At every search of accessible nodes from s, arcs from D are eliminated in order to improve
the time complexity of for ... do sequence. If they are not eliminated, then the time complexity
of the algorithm would be closed to O(m̃2).

Every time the current arc (i, j) ∈ H has i ∈ W and j /∈ W , the initiated graph search is
continued in G D .

Every arc from Ã enters at most once in D and exits at most once out of D. It results that the
total time needed to execute the whole graph search of G D is O(m̃).

All the operations inside for ... do sequence (other than graph search) can be done in O(1)

time.
So, for ... do sequence is executed in linear time complexity.
The arcs from the set H can be sorted in O(m̃ · log(m̃)) = O(m̃ · log(n)) time. Hence, the

time complexity of ATRIMF2 is given by the method used to sort the arcs from H. �

We shall study now TRIMF under weighted sum-type Hamming distance. We shall denote
TRIMF3 this problem. The mathematical model of this problem is:

⎧
⎪⎪⎨

⎪⎪⎩

min
∑

(i, j)∈A{wβ(i, j) · H(β(i, j), β̄(i, j)) + wδ(i, j) · H(δ(i, j), δ̄(i, j))}
β̄ ≥ 0
δ̄ ≥ 0
IMFG with restrictions β̄ and δ̄ is feasible in G for x,

(18)

where H(i, j) = 0 if i = j and 1 otherwise. Of course, wβ(i, j), wδ(i, j) ≥ 0, ∀(i, j) ∈ A.
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In TRIMF3 wβ(i, j) is the cost of modification of β on the arc (i, j) and wδ(i, j) is the cost
of modification of δ on (i, j). The total cost of modification of β and δ is minimized.

Due to the observation that β and δ are modified only on some arcs of Ã, it results that, instead
of (18), the following mathematical for TRIMF3 can be considered:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

minB⊆ Ã{∑(i, j)∈B∩ Ã1
wβ(i, j) + ∑

(i, j)∈B,( j,i)∈ Ã2
wδ( j, i)}

β̄(i, j) = β(i, j), ∀(i, j) ∈ A − Ã1

δ̄(i, j) = δ(i, j), ∀(i, j) ∈ A − Ã2

β̄ ≥ 0

δ̄ ≥ 0

IMFG with restrictions β̄ and δ̄ is feasible in G for x .

(18′)

It is now clear that TRIMF3 can be treated as a particular case of TRIMF1 (if in the
mathematical model (11′) of TRIMF1 k is consider equal to 0 then the model (18′) is obtained).

There are faster algorithms for this finding the maximum flow and, consequently, the minimum
cut in unit capacity networks. For instance, an algorithm is presented by Ahuja et al (1993) which
has the time complexity of O(min{n2/3 · m, m3/2}) = O(min{n2/3, m1/2} · m). More recently,
the complexity of O(n2/3 · m) was also achieved by Sedeno-Noda & Gonzalez-Martin (2000).

We shall study now TRIMF under weighted bottleneck-type Hamming distance. We shall
denote TRIMF4 this problem. The mathematical model of this problem is:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minmax(i, j)∈A{wβ(i, j) · H(β(i, j), β̄(i, j)), wδ(i, j) · H(δ(i, j), δ̄(i, j))}
β̄ ≥ 0

δ̄ ≥ 0

IMFG with restrictions β̄ and δ̄ is feasible in G for x .

(19)

From the observation, there is no need to modify β and δ elsewhere then on some arcs of Ã and
the modification has to be done with the quantity given by the vector λ, it results from (10) and
(12) that, instead of (19), the following mathematical expression for TRIMF2 can be considered:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minH⊆ Ã max{̃c0(i, j)|(i, j) ∈ H}
β̄(i, j) = β(i, j), ∀(i, j) ∈ A − Ã1

δ̄(i, j) = δ(i, j), ∀(i, j) ∈ A − Ã2

β̄ ≥ 0, δ̄ ≥ 0

IMFG with restrictions β̄ and δ̄ is feasible in G for x .

(19′)

It is easy to see that we have obtained in (19′) a similar model to (15′), only the values that
are maximized in the set H ⊆ Ã are different. So, we can very easily adapt ATRIMF2 to solve
TRIMF4. The only difference is that the arcs of H are sorted by c0 instead of c1.

5. Conclusions

We have presented a fast (in linear time) method to test the feasibility of IMFG. We have
studied four new inverse combinatorial problems (under different norms and distances) about
transforming a non-feasible inverse maximum flow problem into a feasible one. These inverse
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feasibility problems consist of modifying as little as possible the restrictions to the bounds of the
flow.

As a future work, we intend to study the problem of transforming a non-feasible inverse max-
imum flow problem into a feasible one by modifying as little as possible the given flow. This
problem seems to be more difficult than the problems studied in this paper. We also intend to
identify and to study new inverse feasibility problems.
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