The present issue showcases Karl Pearson, one of the pioneers of statistics during its formative years. Pearson introduced many of the basic ideas in statistics that we take for granted, such as histogram and the chi-square test, and founded the first department of statistics in history, thereby giving the nascent field a firm foothold in the pantheon of scientific activity. The data-driven ethos we live in is a testimony to his foresight. He was also controversial because of his espousal of ideas such as eugenics, and he had many public quarrels with his academic peers. But that does not take away from him the difference he made by helping found the new field of statistics and nurturing its early development through his copious contributions. Radhendushka Srivastava’s article in this issue highlights a few of his myriad contributions.

In a captivating Face-to-Face interview of the Raman Chair Professor and Nobel Laureate Dr. Harold Varmus by P. P. Majumder, they discuss, in addition to Prof. Varmus’s research and allied themes, his involvement in policy issues, institution building, and his other interests.

In addition to these, the issue also presents, as always, an eclectic collection of articles across the entire spectrum of science, and, as always, it is science pedagogy at its best.

Much of the work of Pearson and his peers in statistics was motivated by problems from biology. In the same tradition, the article of Monalisa Pual describes a statistical study of various body features of a variety of moths found in Delhi, to find the key features relevant for their taxonomy. Moving over to mathematics from statistics, the article by Rishav Bhattacharjee and Jyotirmoy

*Vol.28, No.2, DOI: https://doi.org/10.1007/s12045-023-1539-y
Sarkar studies interesting solid objects that can be created by multiple cuts of a cylindrical knife.

A long article by Jayashree Nagesh on computational techniques in organic chemistry makes a strong pitch for their increased use and, in particular, dissemination among the student community. Beginning with broader ideas and issues, she goes on to focus on specific domains where these can be of great advantage. Moving over to inorganic chemistry, the article by Jaydeep Basu and Sanjib Ganguly describes the Haber–Bosch process for ammonia, related developments and future prospects. In a ‘classroom note’ in chemistry, Sharada Pasricha and T. N. Rangarajan offer an alternative route to acetylation of primary aromatic amines using a combination of tartaric acid and glacial acetic acid as an inexpensive but effective and environment friendly catalyst.

The article by Kripa Gowrishankar and Sravanti Uppaluri introduces phase separation in cells at an intuitive level and goes on to describe several ways in which the cells put it to good use.

Of the two physics articles, both related to quantum mechanics, one by Jayanth Vyasanakere is motivated by the need to deflate the hype bubble created by social media after the 2022 Nobel prize was awarded for certain fundamental concepts in quantum mechanics. Cutting through the hyperbole, it gives an insider’s view of what’s what and what’s not. The other article by Tamás Varga describes the quantum-house effect, a non-local quantum phenomenon, and describes how to demonstrate it on a desktop 2-qubit quantum computer called SpinQ Gemini.

Another important highlight of this issue is an article by V. Rajaraman, one of the pioneers of computer science research, education, and policy in India. It describes the development of the Beowulf cluster, a Linux-based parallel computer built using off-the-shelf PCs connected by Ethernet, promising parallel computing at a reasonable cost.

With such excellent fare to offer, I am sure each reader will find something to learn from and a few other things to add to her/his broader scientific culture.