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In this article, we will see why all the axioms of a vector space

are important in its definition. During a regular course, when

an undergraduate student encounters the definition of vector

spaces for the first time, it is natural for the student to think

of some axioms as redundant and unnecessary. In this article,

we shall deal with only one axiom 1 · v = v and its importance.

In the article, we would first try to prove that it is redundant

just as an undergraduate student would (in the first attempt),

and then point out the mistake in the proof, and provide an

example which will be sufficient to show the importance of

the axiom.

1. Definitions and Preliminaries

All the definitions are taken directly from [1]

Definition 1 (Field). Let F be a non-empty set. Define two op-

erations + : F × F → F and · : F × F → F. Eventually, these

operations will be called ‘addition’ and ‘multiplication’. Clearly,

both are binary operations.

Now, (F,+, ·) is a field if

1. ∀x, y, z ∈ F, x + (y + z) = (x + y) + z

(Associativity of addition) Keywords

Vector spaces, fields, axioms,

Zorn’s lemma.2. ∃0 ∈ F such that ∀x ∈ F, 0 + x = x + 0 = x

(Existence of additive identity)

3. ∀x ∈ F,∃y ∈ F such that x + y = y + x = 0

(Existence of additive inverses for every element)

4. ∀x, y ∈ F, x + y = y + x

(Commutativity of addition)
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5. ∀x, y, z ∈ F, x · (y · z) = (x · y) · z

(Associativity of multiplication)

6. ∃1 ∈ F such that ∀x ∈ F, 1 · x = x · 1 = x

(Existence of multiplicative identity, called the ‘unity’)

7. ∀x , 0 ∈ F,∃y ∈ F such that x · y = y · x = 1

(Existence of multiplicative inverses for every element other than

additive identity)

8. ∀x, y ∈ F, x · y = y · x

(Commutativity of multiplication)

9. ∀x, y, z ∈ F, x · (y + z) = x · y + x · z and (x + y) · z = x · z + y · z

(Multiplication is distributive over addition)

Remark. We shall denote the additive inverse of x ∈ F by −x and

the multiplicative inverse of x ∈ F, where x , 0, by
1

x
.

Since later, ‘scalar multiplication’ will be defined for a vector

space, we will not use ‘·’ for multiplication of two elements of a

field. Rather, if α and β are two elements of a field F, their multi-

plication will be shown by αβ rather than α ·β to avoid confusion.

Definition 2 (Vector Space). Let V be a non-empty set and F be

a field. Define two operations + : V × V → V and · : F × V → V

which will be eventually called the ‘vector addition’ and ‘scalar

multiplication’ respectively. Clearly, + is a binary operation.

Now, (V,+, ·) is a vector space over F if

1. ∀u, v,w ∈ V, (u + v) + w = u + (v + w)

(Associativity of addition)

2. ∃0 ∈ V such that ∀v ∈ V, 0 + v = v + 0 = v

(Existence of additive inverse)

3. ∀v ∈ V,∃u ∈ V such that v + u = u + v = 0.

(Existence of additive inverse for every element)

4. ∀u, v ∈ V, u + v = v + u

(Commutativity of addition)

5. ∀α, β ∈ F and ∀v ∈ V, (α + β) · v = α · v + β · v
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6. ∀α ∈ F and ∀u, v ∈ V, α · (u + v) = α · u + α · v

7. ∀α, β ∈ F and ∀v ∈ V, α · (β · v) = (αβ) · v = β · (α · v)

8. ∀v ∈ V , 1 · v = v, where 1 ∈ F is the unity of the field.

Remark. The additive inverse of any vector v ∈ V will be denoted

by −v.

Henceforth, whenever we shall mention ‘vector space’, we shall

say, ‘a vector space V’ rather than ‘a vector space (V,+, ·)’ to keep

the notations short. It is to be understood that + and · are defined,

and V satisfies all the axioms. Also, it is understood to be defined

over a field F.

Definition 3 (Linear Combination). Let S be a non-empty set in

a vector space V . Then, a linear combination of S is defined as

α1 · v1 + α2 · v2 + · · · + αn · vn, where v1, v2, · · · , vn ∈ S and

α1, α2, · · · , αn ∈ F. Sometimes, it is also referred to as ‘finite

linear combination’ of S .

Definition 4 (Span). Let S be a set in a vector space V . Then,

the span of S , denoted by [S ] is the collection of all the linear

combinations of elements of S . We can write it as

[S ] = {α1 · v1 + α2 · v2 + · · · + αn · vn|α1, α2, · · · , αn ∈ F and

v1, v2, · · · , vn ∈ S } .

Definition 5 (Linear Independence). A finite set S = {v1, v2, · · · , vn}

in a vector space V is said to be linearly independent if α1 · v1 +

α2 · v2 + · · · + αn · vn = 0⇒ α1 = α2 = · · · = αn = 0.

An infinite set S is said to be linearly independent if every finite

subset A ⊂ S is linearly independent.

Remark. It It can be easily proved

that a subset of a linearly

independent set is also

linearly independent.

can be easily proved that a subset of a linearly inde-

pendent set is also linearly independent.

Definition 6 (Linear Dependence). A set S of a vector space is

said to be linearly dependent if it is not linearly independent.
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Remark. ItIt can be easily proved

that a superset of a

linearly dependent set is

also linearly dependent.

can be easily proved that a superset of a linearly de-

pendent set is also linearly dependent.

Definition 7 (Basis). A set B of a vector space V is said to be a

basis if B is linearly independent, and B spans V , i.e., V = [B].

2. Theorems and Results

In this section, we shall prove some well-known results about

vector spaces.

Theorem 1. Every vector space has a basis [2].

We will not give the exact proof of this theorem, but rather a sum-

mary of the idea behind the proof. To prove that every vector

space has a basis, we start collecting elements from the vector

space which are linearly independent. First, we collect a vector

v1 and make a set S 1 = {v1}. If the span of S 1 is whole of V ,

then we are done! If not, we take another vector v2 which is not

in span of S 1 to make S 2 = {v1, v2}. We keep on constructing

such sets. Since with the partial order ⊆, the sets S 1, S 2, · · · form

a chain which has a maximal element (by Zorn’s lemma). This

maximal element is in fact, a basis for V .

Now, we shall prove certain properties of elements in a vector

space. We shall call these properties as theorems.

Theorem 2. Let V be a vector space. Then, ∀v ∈ V, 0 · v = 0,

where 0 ∈ F is the additive identity of the field and 0 ∈ V is the

additive identity of the vector space, also called the ‘zero vector’.

Proof. The proof follows from the simple lines which uses the
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properties of additive identities in field and vector space.

0 · v = (0 + 0) · v,

∴ 0 · v = 0 · v + 0 · v,

∴ 0 · v + (−0 · v) = (0 · v + 0 · v) + (−0 · v) ,

∴ 0 = 0 · v + (0 · v + (−0 · v)) ,

∴ 0 = 0 · v + 0,

∴ 0 = 0 · v.

�

Theorem 3. Let V be a vector space. If a · v = 0, then either

a = 0 or v = 0.

Proof. We know that if a = 0, then a · v = 0 from the above the-

orem. So, let us assume that a , 0.

From Theorem 1, we know that every vector space has a basis.

Let B be the basis for V . Therefore, ∃v1, v2, · · · , vn ∈ B and

α1, α2, · · · , αn ∈ F such that v = α1 · v1 + α2 · v2 + · · · + αn · vn.

Now, we have

a · v = 0,

∴ a · (α1 · v1 + α2 · v2 + · · · + αn · vn) = 0,

∴ a · (α1 · v1) + a · (α2 · v2) + · · · + a · (αn · vn) = 0,

∴ (aα1) · v1 + (aα2) · v2 + · · · + (aαn) · vn = 0.

But, since B is a basis, it is linearly independent and hence the

set {v1, v2, · · · , vn} ⊆ B is also linearly independent. Therefore,

we get ∀i ∈ {1, 2, · · · , n} , aαi = 0. Since a , 0, we have ∀i ∈

{1, 2, · · · , n} , αi = 0.

Hence, v = 0 · v1 + 0 · v2 + · · · + 0 · · · vn = 0. This is because

∀v ∈ V, 0 · v = 0 is known from Theorem 2 and addition of 0

finitely many times is 0 due to the property of additive identity of

a vector space.

Thus, a · v = 0⇒ a = 0 or v = 0. �

Corollary 3.1. If ∀v ∈ V, a · v = 0, then a = 0.
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Proof. From the theorem, we have: If a , 0 and v , 0, then

a · v , 0 (Contrapositive of the theorem statement). Thus, if

∀v ∈ V , a · v = 0 and a , 0, this would lead us to v = 00, which

will be a contradiction to the fact that a ·v = 0 for all v ∈ V . Thus,

a = 0 is the only choice left with us. �

Theorem 4. In a vector space V, let v ∈ V. Then, −a ·v = (−a) ·v,

where a ∈ F.

Proof.

a · v + (−a) · v = (a + (−a)) · v

= 0 · v

= 0.

Thus, the additive inverse of a vector a·v is (−a · v). Since additive

inverses are denoted by −a · v, we have −a · v = (−a) · v. �

3. Our Claim of Redundant Axiom

Now, we shall try to prove axiom 8 stated in the definition of

vector space using all the above results.

“Theorem”. Let V be a vector space. Then, ∀v ∈ V, 1 · v = v,

where 1 ∈ F is the unity of the field.

“Proof”. From Theorem 1, we know that V must have a basis, say

B. Let v ∈ V. Then, ∃v1, v2, · · · , vn ∈ B and α1, α2, · · · , αn ∈ R

such that v = α1 · v1 + α2 · v2 + · · · + αn · vn =
n
∑

i=1
αi · vi. Now, let

1 · v = w, where 1 ∈ F is the unity of the field and w ∈ V. Again,

since B is a basis, ∃w1,w2, · · · ,wm ∈ B and β1, β2, · · · , βm ∈ F

such that w = β1 ·w1+β2 ·w2+ · · ·+βm ·wm =
m
∑

i=1
βi ·wi. Therefore,
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we have

1 ·

n
∑

i=1

αi · vi =

m
∑

i=1

βi · wi,

∴

n
∑

i=1

1 · (αi · vi) =

m
∑

i=1

βi · wi,

∴

n
∑

i=1

(1αi) · vi =

m
∑

i=1

βi · wi,

∴

n
∑

i=1

αi · vi =

m
∑

i=1

βi · wi.

Consider the two sets S 1 = {v1, v2, · · · , vn} and S 2 = {w1,w2, · · · ,wm}.

Clearly, S 1 ⊆ B and S 2 ⊆ B and hence S 1, S 2 are linearly inde-

pendent. Also, the set S 1∪S 2 = {v1, v2, · · · , vn,w1,w2, · · · ,wm} ⊆

B and is also linearly independent. Let, if possible S 1 ∩ S 2 = ∅,

where ∅ denotes the empty set. This means that ∀i ∈ {1, 2, · · · n}

and ∀ j ∈ {1, 2, · · · ,m} , vi , w j.

Using Theorem 4 and adding the additive inverses of each vector

βi · wi in the last equation to obtain,

n
∑

i=1

αi · vi +

m
∑

i=1

(−βi) · wi = 0.

Since S 1 ∪ S 2 is linearly independent, ∀i ∈ {1, 2, · · · , n} , αi = 0

and ∀i ∈ {1, 2, · · · ,m} ,−βi = 0, which in turn gives that βi = 0.

Therefore, v = 0 · v1 + 0 · v2 + · · · + 0 · vn = 0 and w = 0 · w1 + 0 ·

w2 + · · · + 0 · wm = 0. Hence, 1 · 0 = 0.

Now, let us consider that S 1 ∩ S 2 , ∅. Let there be r vectors,

where 0 ≤ r ≤ min {m, n}, which are common in S 1 and S 2. We

shall name them, vi, where i ∈ {1, 2, · · · , r}. Thus, our sets look

like S 1 = {v1, v2, · · · , vr, vr+1, · · · , vn} and S 2 = {v1, v2, · · · , vr,wr+1, · · · ,wm}.

Now, v =
r
∑

i=1
αi · vi +

n
∑

i=r+1
αi · vi and w =

r
∑

i=1
βi · vi +

m
∑

i=r+1
βi · wi.
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Again,

1 ·















r
∑

i=1

αi · vi +

n
∑

i=r+1

αi · vi















=

r
∑

i=1

βi · vi +

m
∑

i=r+1

βi · wi,

∴

r
∑

i=1

1 · (αi · vi) +

n
∑

i=r+1

1 · (αi · vi) =

r
∑

i=1

βi · vi +

m
∑

i=r+1

βi · wi,

∴

r
∑

i=1

(1αi) · vi +

n
∑

i=r+1

(1αi) · vi =

r
∑

i=1

βi · vi +

m
∑

i=r+1

βi · wi,

∴

r
∑

i=1

αi · vi +

n
∑

i=r+1

αi · vi =

r
∑

i=1

βi · vi +

m
∑

i=r+1

βi · wi.

Adding the additive inverses of each of the vectors on the right

hand side of the equation to both the sides and using axioms 3, 4

and 5 of vector space multiple times, we get

r
∑

i=1

(αi − βi) · vi +

n
∑

i=r+1

αi · vi +

m
∑

i=r+1

(−βi) · wi = 0.

Since S 1 ∪ S 2 is linearly independent, ∀i ∈ {1, 2, · · · , r} , αi −

βi = 0 ⇒ αi = βi. Also, ∀i ∈ {r + 1, r + 2, n · · · } , αi = 0 and

∀i ∈ {r + 1, r + 2, · · · ,m} , βi = 0. This tells us that v =
r
∑

i=1
αi · vi

and w = 1 · v =
r
∑

i=1

αi · vi. Hence, 1 · v = v.

4. Where Did Things Go Wrong?

Now, from the above section, we have ‘proved’ that axiom 8 is

redundant, i.e., even if it is not in the definition of vector spaces, it

arises from all other axioms and properties which follow. Before

commenting anything on the proof, let us look at an example.

Example. Consider the set R. Also, consider the field to be R.

We define the operations + : R×R→ R as the usual addition and

· : R ×R→ R as ∀α ∈ R and ∀x ∈ R, α · x = 0. Clearly, this does

not satisfy the 8th axiom of the definition of vector spaces. Also,

it satisfies all other axioms.
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This is contradictory! If the proof above was correct, satisfying

the first 7 axioms would automatically force it to satisfy the 8th

axiom. Hence, there is a need to take another look at the proof.

In our proof, all the arithmetic that has been performed is cor-

rect. All the definitions of linear dependence/independence are

also correctly applied. So, where did things start going wrong?

It must be in something which we have used in the proof. In the

very first step, we have mentioned that every vector space has a

basis. This uses Zorn’s lemma.

Even before Zorn’s lemma is invoked, as seen in the explanation

of the proof, we use linear independence and span to construct

a chain. Now, let us look at the construct carefully. We took a

non-zero vector v1 so that the first set S 1 = {v1} so constructed,

is linearly independent. When we take another vector v2 which is

not in the span of v1 to construct the set S 2 = {v1, v2}, how do we

know that S 2 is linearly independent? To prove that it is linearly

independent, we need to prove α1 ·v1+α2 ·v1 = 0⇒ α1 = α2 = 0.

Suppose not! Then, either α1 , 0 or α2 , 0. If α2 , 0, then

α2 · v2 = −α1 · v1 which then gives, 1 · v2 = −
α1

α2

· v1. Now, to say

that v2 = −
α1

α2

· v1 and hence obtain a contradiction, we need the

axiom 8! Similarly, if we take the other case of α1 , 0, we reach

the same problem!

Thus, the problem creeps in during the proof of existence of ba-

sis for every vector space if we do not consider axiom 8 in the

definition of a vector space. Hence, for all other properties, it is

important.

5. An Important Consequence of Axiom 8

Now, we will prove that in a vector space, the element of the field

which exhibits the property that when multiplied by a scalar v,

gives the same vector v is unique, namely 1.

Theorem 5. Let V be a vector space. If ∀v ∈ V, a · v = v, then

a = 1.
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Proof. Let ∀v ∈ V , a · v = v. Clearly, a , 0 because if so,

∀v ∈ V, a · v = 0 which would lead to a contradiction. Therefore,

in the field F, the multiplicative inverse of a exists as
1

a
. Now, we

have

a · v = v

∴

1

a
· (a · v) =

1

a
· v,

∴

(

1

a
a

)

· v =
1

a
· v,

∴ 1 · v =
1

a
· v,

∴ 1 · v +

(

−
1

a
· v

)

=
1

a
· v +

(

−
1

a
· v

)

,

∴ 1 · v +

(

−
1

a

)

· v = 0,

∴

(

1 −
1

a

)

· v = 0.

SinceIt is necessary for a

vector space to have the

property 1 · v = v for all

vectors v and in fact, no

other scalar can exhibit

this property in a vector

space.

this is true for all v ∈ V , from corollary of Theorem 3, we

have 1 −
1

a
= 0. Thus,

1 −
1

a
= 0,

∴

(

1 −
1

a

)

+
1

a
= 0 +

1

a
,

∴ 1 +

(

−
1

a
+

1

a

)

=
1

a
,

∴ 1 + 0 =
1

a
,

∴ 1 =
1

a
,

∴ 1a =
1

a
a,

∴ a = 1.

Thus, if ∀v ∈ V, a · v = v, then a = 1. �

Theorem 6 tells us that it is necessary for a vector space to have

the property 1 · v = v for all vectors v and in fact, no other scalar
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can exhibit this property in a vector space. To see this, let us look

at an example.

Example. Consider the set X = {0, 1} with the operations + :

X × X → X and · : R × X → X defined as

0 + 0 = 1 + 1 = 0,

1 + 0 = 0 + 1 = 1.

a · v =



















v ; a , 0

0 ; a = 0

Clearly, with this operation of scalar multiplication, every scalar

exhibits the property that when multiplied by a ‘vector’ it gives

the same ‘vector’ back. Hence, (X,+, ·) cannot be a vector space.

If one carefully checks all the axioms of a vector space, axiom 5

will be violated with this definition of scalar multiplication.

6. Conclusion

From all the above definitions, results, and discussions, we can

say that axiom 8 of the definition of a vector space is as important

as the rest of the axioms in the set and hence cannot be ignored.

Often the mistake committed, especially by undergraduate stu-

dents, is to check only a first few axioms and then ‘assume’ that

all others hold. We have already exhibited two examples that fail

to be vector spaces just because they do not satisfy only one ax-

iom!

Also, we have proved that the only element a of a field that has

the property a · v = v for every vector v is unity 1. Thus, if one

wants to check if a given set is a vector space or not, we should

first check if this ‘unity’ is unique. If not, then it is definitely not

a vector space. If yes, then it may form a vector space depending

on whether or not it satisfies all other axioms.
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