Classroom

In this section of Resonance, we invite readers to pose questions likely to be raised in a classroom situation. We may suggest strategies for dealing with them, or invite responses, or both. “Classroom” is equally a forum for raising broader issues and sharing personal experiences and viewpoints on matters related to teaching and learning science.

Group Laws Satisfying $1+1=11$ and $2+2=22$

In a recent election campaign, Prime Minister Modi claimed that if one works hard in a correct political climate, one can make $1+1=11$. In a similar speech, Mr Sitaram Yachuri mentioned that if we all work together then our combined strength will make $2+2=22$. Here, we address the question: Is there a field k with a polynomially defined binary law of composition $+$ such that the two equations $1+1=11$ and $2+2=22$ are both valid in k. In this note, we show that there are infinitely many such fields and characterize them all.

1. Introduction

While browsing through funny math vides, I came across a YouTube short film comedy, Alternative Math, produced by Ideaman Studios (see [1]). It is a hilarious exaggeration of a math teacher who is dragged through the mud for teaching that $2+2=4$ and not 22 as Dany, a young student insisted. In a recent election campaign in India, the Indian Prime Minister Narendra Modi declared, ‘will make $1+1=11$’, perhaps by way of hinting the

Keywords
Fields, group laws, polynomials, rational functions, $1+1=11, 2+2=22$, AMS subject classification numbers: 12Y05, 20M99, 97XX.
CLASSROOM

<table>
<thead>
<tr>
<th>Formula for $x \oplus y$</th>
<th>Associative?</th>
<th>Commutative?</th>
<th>$1 \oplus 1 = 11$?</th>
<th>$2 \oplus 2 = 22$?</th>
</tr>
</thead>
<tbody>
<tr>
<td>usual plus $x + y$</td>
<td>Yes</td>
<td>Yes</td>
<td>No, $1 + 1 = 2$</td>
<td>No, $2 + 2 = 4$</td>
</tr>
<tr>
<td>Concatenation</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$x \oplus y = x + y + 9$</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$x \oplus y = x + y + 18$</td>
<td>Yes</td>
<td>Yes</td>
<td>No, $1 \oplus 1 = 20$</td>
<td>Yes</td>
</tr>
<tr>
<td>$x \oplus y = 5x + 6y$</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$x \oplus y = (11/2)(x + y)$</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 1. Some examples of binary laws of composition satisfying $1 \oplus 1 = 11$ or $2 \oplus 2 = 22$.

The prospects of tremendous growth in economy if only the State and the Centre act in unison (see [2]). Let us forget politics and ask for some ‘genuine’ group operation “+” in which we have both $1 + 1 = 11$ and $2 + 2 = 22$. Indeed there are several such algebras. In this paper we characterize all fields k having a polynomially defined group law + satisfying both $1 + 1 = 11$ and $2 + 2 = 22$. We also give an example of a rational group law having the same property.

This is not an article on politics. Instead, it is about plain simple old-fashioned algebra. Let us start from the two equations mentioned above: $1 + 1 = 11$ and $2 + 2 = 22$. This raises the question whether it is possible to define a new arithmetic “+$” satisfying the two equations $1 + 1 = 11$ and $2 + 2 = 22$? Yes, the young Danny, Mr. Yachuri and the Prime Minister Modi are all correct; it is certainly possible. As mentioned in the movie, it all depends upon what one means by the word called “plus”. It is a special case of what is known as a binary law of composition in algebra – a well-defined process of combining two given numbers to produce a unique third number. Now let me give some examples of such “additions” which demonstrate the validity of the above statements $1 + 1 = 1$ and $2 + 2 = 22$. To avoid confusion with the ordinary addition, let us use the special notation of circled-plus \oplus for our new addition and retain the symbol “+” for the usual addition.
The most natural example of such an addition is the concatenation \oplus: the sum $a \oplus b$ is obtained by writing ‘a’ followed by ‘b’, e.g. $23 \oplus 37 = 2337$. Here, of course, $1 \oplus 1 = 11$ and $2 \oplus 2 = 22$, no problem. However, unlike our usual addition, this is not commutative: $37 \oplus 23 = 3723 \neq 23 \oplus 37$. Even worse, this is not a polynomial while our usual $x + y$ is a linear polynomial in two variables and universally defined over the field of rationals.

Example 2. Let us now give an example of a polynomially defined \oplus such that $1 \oplus 1 = 11$ and $2 \oplus 2 = 22$. Define $x \oplus y$ by the rule $x \oplus y = 5x + 6y$ (5th item in the Table 1). Here, $2 \oplus 2 = 10 + 12 = 22$ and $1 \oplus 1 = 5 + 6 = 11$.

However, it is our innate feeling that this is not a genuine addition either. This operation is neither commutative nor associative. So we continue to ask for some ‘natural’ addition satisfying $1 \oplus 1 = 11$ and $2 \oplus 2 = 22$. But what do we mean by ‘natural’ here? We need to specify some of the more important (or ‘desirable’) properties valid for our classical ‘+’. The most important property of the addition is that it is a polynomially defined abelian group over, say the set of all real numbers. In particular, it has the following nice properties:

$$\{ x + y = y + x, (x + y) + z = x + (y + z), x + 0 = x \}.$$

The first two laws are known as commutativity and associativity, respectively. Notice the example given by the rule $x \oplus y = 5x + 6y$ is neither commutative nor associative. Let us check this example for associativity:

$$\begin{align*}
(1 \oplus 1) \oplus 1 & = 11 \oplus 1 = 55 + 6 = 61 \text{ but } 1 \oplus \\
1 \oplus (1 \oplus 1) & = 1 + 11 = 5 + 66 = 71.
\end{align*}$$

So this addition is neither commutative nor associative. Now ask the question: is there a field k having a polynomially defined associative and commutative addition \oplus satisfying both $1 \oplus 1 = 11$ and

In mathematics, a “good” theorem is not something that just happens to be true, but it is rather a nice mathematical statement that you want to be true. So adjust your definitions accordingly. – Shreeram S Abhyankar
2 ⊕ 2 = 22? In this note we show that the answer is an emphatic ‘yes’. There are infinitely many such fields. Here we characterize all fields \(k \) having a polynomially defined group law \(\oplus \) and satisfying both \(1 \oplus 1 = 11 \) and \(2 \oplus 2 = 22 \).

Theorem. Let \(k \) be any subfield of the real or complex numbers. Then \(k \) has a polynomially defined group law \(\oplus \) satisfying both \(1 \oplus 1 = 11 \) and \(2 \oplus 2 = 22 \) if and only if \(k \) contains the quadratic extension field \(\mathbb{Q}[\sqrt{89}] \).

Proof. Let \(x \oplus y = g(x,y)k[x,y] \) be a non-constant associative polynomial over the field \(k \). Let the highest degree of \(x \) in the polynomial \(g(x,y) \) be, say \(n \). Comparing the \(x \)-terms in the equation \(g(x,g(y,z)) = g((x,y),z) \) we see that the degree of \(x \) in RHS is \(n^2 \) while the degree of \(x \) in LHS is just \(n \). Since \(k \) is an infinite field, the monomials are linearly independent and hence \(n^2 = n \) i.e. \(n = 0 \) or \(n = 1 \). But, if \(n = 0 \) then \(x \oplus y \) does not depend upon \(x \), impossible since a group operation depends upon both variables. Hence \(n = 1 \). Similarly the highest degree of \(y \) in \(g(x,y) \) is also one. Hence the most general polynomially defined group law \(g(x,y) \) over \(k \) is bilinear polynomial in \(x \) and \(y \):

\[
x \oplus y = axy + bx + cy + d,
\]

for some constants \(a, b, c, d \) in \(k \). It is easy to check that this binary law of composition will be associative if and only if \(b = c \) and \(ad = b^2 - b \) (see Box 1).

Thus we have

\[
x \oplus y = axy + bx + by + d.
\]

If \(a = 0 \), then \(b = 1 \) and hence \(x \oplus y = x + y + d \). But this will be a contradiction in our case since we demand \(1 \oplus 1 = 11 \) and hence \(d = 9 \) but then \(2 \oplus 2 = 13 \) and not 22. So \(a \neq 0 \) and the associative law will force \(d = (b^2 - b)/a \). Thus we have the most general polynomially defined group law satisfying \(1 \oplus 1 = 11 \) and \(2 \oplus 2 = 22 \), namely:

\[
x \oplus y = axy + b(x + y) + (b^2 - b)/a
\]
Here, we want the binary polynomial $x \oplus y = axy + bx + cy + d$ to be both associative and commutative. It is clear that commutativity implies symmetry in x and y, i.e. the coefficients of x and y must be the same and hence $c = b$. Let us now calculate the expression $(x \oplus y) \oplus z$:

$$(x \oplus y) \oplus z = (axy + bx + cy + d)z + b(axy + bx + cy + d) + bz + d.$$

Again, for commutative and associative laws, we need the complete symmetry among the three variables $x, y,$ and z. In particular, the variables $x, y,$ and z must have the same coefficients. In other words, we have $ad + b = b^2$ i.e. $ad = b^2 - b$. Here $a \neq 0$. For, if $a = 0$, then $b = 1$ and so $x \oplus y = x + y + d$ and this cannot satisfy both $1 \oplus 1 = 11$ and $2 \oplus 2 = 22$ as proved below. Thus the final form of the group law is $x \oplus y = axy + bx + by + d$ where $d = (b^2 - b)/a$ and this was exactly our claim.

for some elements a, b in k with $a \neq 0$. Notice that there are two unknown parameters a and b to choose and we have two constraints i.e. $1 \oplus 1 = 11$ and $2 \oplus 2 = 22$. So we need to solve the two equations

$$a^2 + 2ab + (b^2 - b) = 11a4a^2 + 4ab + (b^2 - b) = 22a.$$

Eliminating b from the two equations\(^1\), we get $a^2 - 60a + 99 = 0$. The two solutions of this quadratic equation are $a = 30 \pm 3 \sqrt{89}$. Thus the field k is consistent with the Modi–Yachuri equations $1 \oplus 1 = 11$ and $2 \oplus 2 = 22$ if and only if $\sqrt{89}$ exists in k. This completes the proof of the theorem.

Let us use this idea to give a finite example of such a field. Since 89 is a prime number, we take the finite field k as $\mathbb{Z}[89]$ itself. Here $a = 30$ since $89 = 0$. The value of b can be calculated and it turns out to be 5 (see Box 2; remember, here we work mod 89). Hence the group law \oplus takes the bilinear form $x \oplus y = 30xy + 5x + 5y + 60$ (mod 89).

By our theory, this must be both commutative and associative.

\(^1\)Indeed, resultant $(a^2 + 2ab + b^2 - b - 11a, 4a^2 + 4ab + b^2 - b - 22a, b) = a^4 - 60a^3 + 99a^2$. Since $a \neq 0$, we have the quadratic equation $a^2 - 60a + 99 = 0$.

Box 1. Conditions for Associativity

Here, we want the binary polynomial $x \oplus y = axy + bx + cy + d$ to be both associative and commutative. It is clear that commutativity implies symmetry in x and y, i.e. the coefficients of x and y must be the same and hence $c = b$. Let us now calculate the expression $(x \oplus y) \oplus z$:

$$(x \oplus y) \oplus z = (axy + bx + by + d)z + b(axy + bx + by + d) + bz + d.$$
Box 2. Group Law in the Field Z[89]

Take \(a = 30 \) in the equations

\[
\begin{align*}
 a^2 + 2ab + (b^2 - b) &= 11a^4a^2 + 4ab + (b^2 - b) = 22a. \\
\end{align*}
\]

and solve for \(b \) (mod 89). To avoid excessive calculations, let us subtract the first equation from the second equation to get \(3a^2 + 2ab = 11a. \) When \(a = 30 \) this equation becomes \(2700 + 60b = 330 \) or \(b = (−2700 + 330)/60 = −237/6 = 30/6 = 5. \) Finally the value of the constant term \(d = (b^2 - b)/a = 20/30 = 2/3 = 60 \) since \(3 \times 60 = 180 = 180 + 2 = 2 \) (mod 89). In other words, our desired group is \((Z[89], \oplus)\) where the group law is \(x \oplus y = 30xy + 5x + 5y + 60 \) (mod 89).

Commutativity is obvious because of the symmetry between the two variables \(x \) and \(y. \) Just for fun, let us verify the validity of the associative law.

\[
(x \oplus y) \oplus z = (30xy + 5x + 5y + 60) \oplus z
\]

\[
= 30(30xy + 5x + 5y + 60)z \\
+ 5(30xy + 5x + 5y + 60 + 5z + 60)
\]

\[
= 900xyz + 150xz + 150yz + 1800z + 150xy
+ 25x + 25y + 5z + 120
\]

\[
= 900xyz + 150xz + 150yz + 150xy + 25x
+ 25y + 1805z + 120
\]

\[
= 900xyz + 150xz + 150yz + 150xy + 25x
+ 25y + 25z + 120,
\]

which is symmetric in \(x, y \) and \(z \) and hence the addition \(\oplus \) is associative. Also, this operation has an identity element as well: \(x \oplus 77 = x \) for all \(x. \)

Indeed, \(x \oplus 77 = 2310x + 5x + 385 + 60 = 2315x + 445 = x \) (mod 89).

Finally, let us calculate the crucial values of \(1 \oplus 1 \) and \(2 \oplus 2. \)

Here \(1 \oplus 1 = 30 + 5 + 5 + 60 = 100 = 89 + 11 = 11 \) (mod 89).
Similarly, \(2 \oplus 2 = 120 + 10 + 10 + 60 = 200 = 178 + 22 = 2 \times 89 + 22 = 22 \text{ mod } (89) \).

Thus both equations \(1 \oplus 1 = 11 \) and \(2 \oplus 2 = 22 \) are valid in the arithmetic of \(\mathbb{Z}[89] \).

However, \(3 \oplus 3 \) will not be 33 in this arithmetic: \(3 \oplus 3 = 270 + 15 + 15 + 60 = 4 \text{ (mod 89)} \).

This addition law \(x \oplus y \) is commutative, associative and has an identity element as well. Is this really a new math as questioned in the newspaper headlines [2]? No, this is just the old multiplication hidden in a new form. More formally, this group \((k, \oplus)\) is isomorphic to the usual multiplication over the field. Indeed, let \(f(x) = 30x + 5 \). Then

\[
\begin{align*}
f(x \oplus y) &= 30(30xy + 5x + 5y + 60) + 5 \\
&= 900xy + 150x + 150y + 1800 + 5 \\
&= 900xy + 150x + 150y + 1805 \\
&= 900xy + 150x + 150y + 25 \text{ (mod 89)} \\
&= (30x + 5)(30y + 5) \\
&= f(x) \cdot f(y).
\end{align*}
\]

So the semigroup \((\mathbb{Z}[89], \oplus)\) is isomorphic to the multiplicative semigroup \((\mathbb{Z}[89])\). For example:

\[
\begin{align*}
f(77) &= 30 \times 77 + 5 = 2315 = 2314 + 1 = 26 \times 89 + 1 = 1 \text{ (mod 89)}. \\
\text{Also,} \\
f(74) &= 30 \times 74 + 5 = 2225 = 25 \times 89 = 0 \text{ mod 89}).
\end{align*}
\]

Thus the element 77 acts like ‘1’ and the element 74 acts like ‘0’ in this semigroup.

In fact, in this algebra, \(x \oplus y = 74 \) if and only if \(x = 74 \) or \(y = 74 \) (mod 89).
An Example of a Rational Function $x \oplus y$ satisfying $1 \oplus 1 = 11$ and $2 \oplus 2 = 22$.

So far, we have been concentrating on polynomial functions. But we can go one step further and ask for commutative and associative functions $g(x, y) \in k(x, y)$, the field of binary rational functions over k. These are thoroughly studied in the literature under the name of formal semigroups and/or one-dimensional algebraic groups. For example, it is known that every rational group law over an algebraically closed field k of characteristic 0 is of the form $L^{-1}G(L(x), L(y))$ where $G(x, y)$ is either $x + y$ or $x + y + xy$ and L is a linear fractional transformation over k such that $L(0) = 0$. (see e.g. [4], [5]). This being a pedagogical classroom note, we will be content by giving just one typical example of a rational function $x \oplus y$ satisfying the Danny–Modi–Yachuri equations:

Define $x \oplus y := (297 \, xy + 22x + 22y)/(22 + 9xy)$.

Here, $1 \oplus 1 = (297 + 44)/(22 + 9) = 341/31 = 11 \odot$ and $2 \oplus 2 = (1188 + 88)/(22 + 36) = 1276/58 = 22 \odot \ominus$

In fact, this rational formula is much more well-behaved than our polynomial example. Here we do have $x \oplus 0 = x$ as well.

Acknowledgements

In conclusion, the author sincerely thanks the referee for making very useful suggestions that not only clarified but also enhanced the presentation of the paper. The author sincerely thanks Dr. Stephen Kirkland, Dr Julien Arino and the Department of Mathematics, University of Manitoba for providing support and a pleasant atmosphere conducive of doing active research. Also, my sincere thanks to the Editorial Office of Resonance for the beautiful typesetting of the paper.

Suggested Reading

[1] 2+2=22; Alternative Math video: http://kstati.net/2-2-22/

