Professor P W Anderson (Phil Anderson) was one of the greatest theoretical condensed matter physicists. The unique feature of his approach to theory was to depend heavily on experimental results. He started his career in Bell Labs and was a professor at Princeton University during most of his working life. His genius was recognized by Professor Nevill Mott who used to have Phil Anderson regularly as a visiting scientist in Cambridge. I met Prof. Anderson long ago in Cambridge with Prof. Mott. It is interesting that Mott and Anderson shared the Nobel Prize in 1977 (along with van Vleck). On another occasion, I met him along with John Goodenough, both of whom were interested in magnetism. The contributions of Phil Anderson to condensed matter physics are many and are of fundamental importance to the subject. I have cherished the beauty of his work, my pet example being the Edwards–Anderson model for spin glasses.

My academic relationship with Phil Anderson started during the unforgettable era of high-temperature superconductivity. There was a conference on valence fluctuation in Hotel Ashok, Bangalore, in late 1986. The conference had been organized by TIFR. I had been asked to give a talk on valence fluctuation in chemistry. The same afternoon Phil Anderson gave a lecture. After my lecture, he came to me and asked whether I knew of the recent discovery of an oxide exhibiting superconductivity around 35 K. (Till then 23 K was the upper limit for the superconducting transition). I did not know about this discovery and asked him what type of oxide it was. Phil Anderson told me that it had copper, lanthanum, etc. I immediately asked him if it had something to do with La$_2$CuO$_4$. I had worked on this oxide since 1971. He exclaimed, of course, it is Ba or Sr substituted La$_2$CuO$_4$. He was interested to know all that I had done on La$_2$CuO$_4$. He came to my laboratory in IISc that evening and spent a few hours. He was excited to find that La$_2$CuO$_4$ was antiferromagnetic. I gave him reprints of our publications, and before leaving he said, if La$_2$CuO$_4$ is an antiferromagnetic insulator, how come La$_{2-x}$Sr$_x$CuO$_4$ is a high-temperature superconductor! This is a mystery. Phil Anderson later came out with the now famous RVB theory, to which Dr Bhaskaran has also contributed. RVB theory is somewhat related to Pauling’s ideas on electrons in metals.

I have heard Phil Anderson many times. In many of the meetings, he would come with blank transparencies and start writing on them during the talk. Surprisingly, he could read what he wrote, but the audience could barely make out what he was writing. It did not matter because it was Phil Anderson.

*Vol.25, No.5, DOI: https://doi.org/10.1007/s12045-020-0978-y
It is difficult to find great physicists like Phil Anderson. He was simple, straightforward and not shy to find out details of experimental results. What is truly admirable is that he continued to do research (and publish!) even as he was approaching his 96th year. What a true scientist! The world of physics will miss him.

Professor C N R Rao
Linus Pauling Research Professor
Jawaharlal Nehru Centre for Advanced Scientific Research
Bangalore 560 064, INDIA.
Email: cnrrao@jncasr.ac.in