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Introduction to the LASSO

A Convex Optimization Approach for High-dimensional Problems

Niharika Gauraha

The term ‘high-dimensional’ refers to the case where the num-
ber of unknown parameters to be estimated, p, is of much larger
order than the number of observations, n, that is p > n. Since
traditional statistical methods assume many observations and a
few unknown variables, they can not cope up with the situations
when p > n. In this article, we study a statistical method, called
the ‘Least Absolute Shrinkage and Selection Operator’ (LASSO),
that has got much attention in solving high-dimensional prob-
lems. In particular, we consider the LASSO for high-dimensional
linear regression models. We aim to provide an introduction of
the LASSO method as a constrained quadratic programming prob-
lem, and we discuss the convex optimization based approach to
solve the LASSO problem. We also illustrate applications of
LASSO method using a simulated and a real data examples.

1. Introduction and Motivation

In order to build an intuition about high dimensional problems,
and the limitations and difficulties associated with it, we start with
the simplest case where observations are noiseless. We consider
a linear model as:

Y = Xp°, (1

where Y € R” is a response vector, X € R™? is a design matrix
and 8° € R” is a vector of unknown true regression coefficients.
For p > n, the problem (1) is an underdetermined linear system
and there is no unique solution; in fact, there is an infinite set of
solutions. Thus, it is impossible to identify the correct solution
from the infinite solution set without some additional informa-
tion or constraints. So, to simplify things we assume a set of
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The sparsity assumption
for an unknown vector v

relatively small number

means that it has a

of non-zero elements.

constraints and then we pick one out of the many solutions that
satisfies those constraints. For example, sparsity assumption for
the true 8 is a constraint that it is supposed to find a solution to
the linear equation (1), that has the fewest number of non-zero
entries in 8°. This problem can be mathematically described as
{o-norm constrained optimization problem as:

minimize ||Bllp such that Y = Xg. (2)
BERP

The problem (2) is equivalent to the best subset selection. When p
is large, an exhaustive search of the best subset is computationally
infeasible, because it requires considering all (1:) models (where
s < n). Since the optimization problem (2) is non-convex and
combinatorial in nature, we consider the nearest convex problem,
which is ¢;-norm constrained convex optimization problem given
as:

minimize ||B||; such that Y = Xg. 3)
BERP

The optimization problem (3) is known as the Basis Pursuit Lin-
ear Program (BPLP), see chapter 4 of [1] for further information.
A number of efficient algorithms have been developed for solv-
ing such convex optimization problems (we will discuss in more
detail later). In the following, we consider a simple numerical ex-
ample to illustrate about high dimensional problem and to show
that under sparsity assumption it is possible to solve the underde-
termined system of linear equations.

Bi
2 2 1 0
HE @

B3

The problem (4) is an under determined equation system with two
equations and three variables 8 = (B, 82,/33)" . Let us assume that
it has a sparse solution. In other words, the number of non-zero
components of S is less than or equal to two. In order to find
the candidate solutions, we have to solve the equation system (4)
by setting the subset of its components to zero. Here are some
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candidate solutions to (4):

Br=162=0,B=0], WBllo=1, 1Bl =1
Br=0,B2=28=2], IBllo=2, 1Bl =4

The sparsest solution is [3; = 1, 8> = 0, B3 = 0], and the solution
of the basis pursuit is the same as the sparsest solution (but it may
not be the case always).

In order to build an idea about how shrinking of coefficients helps
in finding a stable solution, we perform a small simulation study
for the linear regression model. We consider the usual linear re-
gression model:

Y =Xg" +¢, ©)

with response vector Y, design matrix X,x,, true underlying
coeflicient vector ,ng , and error vector €,x;. To simulate data
(Y, X) for the linear regression model (5), we consider the fol-
lowing setup.

Data Simulation Setup

e p =20, n = 50 and the elements of the design matrix, X;;, are
generated IID from N/(0, 1) once and then kept fixed.

® Eix1 ™~ Nn(o, In)

e f°=1(1,..,1,.01,..,.0L,0,...,0}.
e N e
5 5 10

The ordinary least squares (OLS) estimator 30LS can be com-
puted using the following equation:

Bors = XTX)"'X"Y,

We recall that the expected prediction error of the OLS estimator
BOLS ,is given by (see section 3.2 of [2] for the detailed derivation)

Ew+mmﬂ=#+fn
n
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Table 1. Simulation results
of the OLS and srinkage es-
timators.

Method Bias  Variance Prediction Error
OLS 0.004 04 1.430
OLS-.01 0.004 0.368 1.404
OLS-.05 0.016 0.284 1.327
OLS-1 0.051 0.218 1.289
OLS-2 0.192 0.155 1.356
OLS-3 0426 0.137 1.565

Where the first term o2 is the irreducible error and the second
term ‘772 p corresponds to the variance of the OLS estimate f =
X,éOLS. We note that each component (ﬁOLS )j contributes equal
variance "72 regardless of whether the true coefficient is large or
small (or zero). In our simulation example, to compute the ex-
pected prediction error, bias and variance of the OLS fit f(X) =
XBors, we repeat the following steps 100 times.

Simulation Steps

1. Generate an error vector as €,x; ~ N,(0, I,,) and then compute a
response vector as Y = XB° + €.

2. Compute the OLS fit XBors = X(X'X)'X"Y.

3. Generate an error vector as €,x; ~ N(0, 1) and then compute a
new response vector as Ysr = Xﬂo + €.

4. Compute the prediction error as PE = %Hth - XBors ||%.

The expected prediction error (EPE) is computed by taking the
average over prediction error of 100 simulations. We also com-
pute the bias and variance of the OLS fit over 100 simulations.
These results are reported in the first row of the Table 1. Now,
we try to remove the variability associated with the small coeffi-
cients by shrinking them towards zero. In our previous example,
we shrink or soft-threshold (to be defined later) each coefficient
of the OLS estimator by an amount A, and we denote the new es-
timator as ,@OLS — A. We use the different amount of shrinkage
as 4 =.05,.1,.2,.3, .4 and observe the changes in bias, variance,
and prediction error (over 100 simulations), see rows 2, 3,4, 5 and
6 of Table 1. From Table 1, it is clear that shrinkage reduces the
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variance of the fit but increases its bias. We notice that when we
shrink all coefficients by 4 = .1, we get the minimum prediction
error. Thus, the right amount of shrinkage can provide a more
stable solution (at the risk of introducing little bias). We refer
to section 2.9 of [2] and section 2.1.3 of [3] for more details on
model selection and bias-variance trade-off.

Next, we define the Least Absolute Shrinkage and Selection Op-
erator (LASSO), which is based on the following key concepts:
(1) ¢, regularization approximates ¢y regularization (best subset
selection).
(ii) Shrinkage (if done properly) helps to improve prediction per-
formance.

The LASSO, introduced by [4] is a penalized least squares tech-
nique which puts ¢; constraint on the estimated regression coeffi-
cients. The LASSO estimator, 3, for the linear regression model
(5) is given as follows:

A oA 1
B=p) = argmin{;IIY—X,Blli +4 II,BII1}, (6)

BERP

where 4 > O is the regularization parameter that controls the
amount of shrinkage. Due to the geometry of the £;-norm penalty
the LASSO shrinks some of the regression coefficients to exactly
zero (to elaborate later). Thus it serves as a variable selection
method also.

We have organized the rest of the article in the following manner.
In section 2, we briefly review convexity and convex optimization
theory, least squares regression, and variable selection problem.
In section 3, we explain the LASSO method, we derive its closed
form solution for single variable and orthonormal design case.
We discuss iterative method for computation of the LASSO so-
lution, in section 4. Section 5 is concerned with the applications
of the LASSO. Section 5 gives computational details. We shall
provide some concluding remarks in section 6.

The least absolute

shrinkage and selection
operator was introduced
by Robert Tibshirani in

1996 based on Leo

Breiman’s non-negative

garrote.
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The soft thresholding is

also called wavelet

shrinkage, as values for

both positive and

negative coefficients are
being ‘shrinked’ towards

Z€ro.

2. Notations and Background

In this section, we state the notations and assumptions, and recall
some preliminary results. We consider the usual linear regression
set up as given in (5). We assume that the components of the noise
vector € € R" are independent and identically distributed (IID)
N(0, 0%). We use subscripts to denote the columns of X, i.e., X
denotes the jth column. We also assume that the design matrix X
is fixed, the data is centered, and the predictors are standardized,
so that we have:

n n
1
D ¥i=0, >(Xpi=0and -XIX; =l forall j=1,...p.
i=1 i=1 n

The £p-norm, £;-norm, and ¢>-norm are defined as:

Blo = 21, 1(8; # 0) (7)
Bl = %2, 1)1 ®)
Bl = 0, 8- ©)

The soft-thresholding operator is defined as follows, and it is
illustrated in Figure 1, where the straight line (in blue) is soft-
thresholded by the quantity 4 = 1 (in red).

x+Ad ifx<-A4
Six)=< 0 if|x] <A (10)
x—A ifx>A

2.1 Background on Convexity

In this section, we review some background and some useful the-
orems concerning convexity and convex optimization theory. For
more details on convex optimization theory we refer to the chap-
ters 1 and 2 of [5] and chapters 2, 3, 4 and 5 of [6].

Definition 1 (Affine Functions) An affine function is a function
composed of a sum of a constant and a linear function, given as

f(x)=Ax+b,

444

W RESONANCE | April 2018



GENERAL ARTICLE

Figure 1. An illustration of
the soft-thresholding func-

pd tion.

T T T T T T T
-3 -2 -1 0 1 2 3

for some matrix A and vector b of appropriate dimensions. It can
be also viewed as a linear transformation followed by a transla-
tion.

Definition 2 (Convex Sets) A set C is said to be convex, if it con-
tains the line segments between any two of its points, that is:

Ax+ (1 -AD)yeC, forallx,yeC, and forall A € [0,1].
(11)

For the following definitions we assume an objective function,
f(x), defined as f : R? — R, and its domain is denoted by D(f).

Definition 3 (Convex Functions) A function f is convex if its
domain, D(f), is a convex set and the following holds:

fAx+ (A =Dy < Af(x)+ (A = Df(Q), forall x,y € D(f), forall A € [0, 1].
(12)

If the above definition (12) holds with strict inequality for x # y
and forall A € (0, 1), then f is strictly convex.

Definition 4 (Sub-level Sets) The a-sublevel set of a function f,
is the set of all points x such that f(x) < a, where @ € R.
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Definition 5 (First Order Condition for Convexity) Ifa function
f is differentiable, then f is convex if and only if, D(f) is a convex
set and for all x,y € D(f) the following holds:

fO) = f(0) + VA (- ). (13)

The term f(x) + V£(x)" (y — x) is the first-order approximation
of the function f at the point x. The first order condition implies
that f is convex if and only if the tangent line is a global under-
estimator of the function f. Similarly, if the above condition (13)
holds with strict inequality, then f is strictly convex.

Definition 6 (Sub-gradients) A sub-gradient of a convex func-
tion f (f may not be differentiable) at x is any g € RP such that
the following holds:

fO) 2 f(x) + &' (y = x), forall y. (14)

For example: The absolute function f(x) = |x| is not differentiable
at x = 0. For x > 0, sub-gradient g = +1, for x < 0, sub-gradient
g = —1 and at x = 0, sub-gradient g is any element of [-1, 1].

Definition 7 (Sub-differentials) Ser of all sub-gradients of a con-
vex function f at x is called the sub-differential of f at x, and it is
denoted as:

0f(x) ={g € R? : gis a sub-gradient of f at x }

For example: sub-differential of f = |x| at x, is 0 f(x) = sign(x),
where the sign function is defined as follows.

-1 ifx<0
sign(x) =1¢ [-1,1] ifx=0 (15)
1 ifx>0

The absolute function f = |x| and its sub-differential §f(x) =
sign(x) is illustrated in Figure 2.

We note that for a convex and differentiable function f, df(x) =

V).
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Figure 2. The abso-
lute function and its sub-

differential.
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Definition 8 (Convex Optimization Problems) A convex optimiza-

tion problem is an optimization problem of the form:
minimize f(x)
subject to gi(x) <0, i=1,...,m (16)
hi(x)=0, i=1,..,r
where x € R? is the optimization variable, f and g; are convex
functions for all i = 1,...,m and h; are affine functions for all

i = 1,...,r. If there are no constraints, m = r = 0, it is called

unconstrained convex optimization problem.

If the objective function, f, and constraint functions are all affine,
then it is called a linear programming (LP) problem. If the objec-
tive function, f, is convex and quadratic, and the constraint func-
tions are affine, then it is called a quadratic programming(QP)

problem.

Definition 9 (Lagrange Duality) Consider a convex optimization
problem as given in the Definition 8. Lagrangian of an optimiza-
tion problem is defined as augmented objective with a weighted

sum of constraints.
m r
Lxuv) = f(0) + ) wigi0) + ) vilix, (A7)
i=1 i=1

where u; > 0 for all i = 1, ...,m and the vectors (u € R"™,v € R")

are called dual variables.
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We notice that, for every feasible x € D(f), and for every dual
feasible (u,v) the following holds:

f(x) = L(x,u,v).

The Lagrange dual function is defined as the minimum value of

the Lagrangian over x € RP:

l(u,v) = minimize L(x, u, v). (18)
XeRP

Let x* be a primal optimal solution and f(x*) be the primal op-
timal value, then minimizing L(x,u,v) over all x gives a lower
bound for f(x*) :

F(x*) > minimize L(x,u,v) > minimize L(x, u,v) = l(u,v)
xeD(f) XERP

We get the best lower bound when the dual function l(u, v) is max-
imized over (u,v), which is also known as the dual problem:
maximize l(u,v)
ueR™ yeR"
subject tou; > 0, foralli=1,...,m
The dual problem is always convex even if the corresponding pri-

mal problem is not convex, for example, /(u, v) is convex, since it
is affine in (u, v).

Definition 10 (Weak and Strong Duality) If x* is a primal op-
timal solution and (u*,v*) is the a dual optimal solution then
weak duality always holds, that is:

FOXF) > I(u*,v>).

Strong duality holds when the primal and dual optimal values
coincide:

&) = 1™, v™).

Definition 11 (Slater’s Condition) For a convex primal problem,
if there exists an x € R? such that g;(x) < 0, ..., gn(x) < 0 and
hi(x) =0, ..., h(x) = O then strong duality holds.
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Definition 12 (KKT Condition) Suppose f(x) is a primal opti-
mization problem, L(x, u, V) is the corresponding Lagrangian and
I(u, v) is the dual problem as defined previously. Let x* be a pri-
mal optimal solution and (u*,v*) be a dual optimal solution then
the Karush Kuhn Tucker (KKT) conditions are defined as follows.

Stationarity Condition: Sub-differential of L(x, u, v) at (x*, u*,v*)

must contain 0

0esf(x*) + Z ur 5gi(x*) + Z VE Shi(x*)

i=1 i=1

Complementary Slackness

u.gi(x*)=0, foralli=1,..,m

Primal Feasibility Condition

gi(x") <0, foralli=1,..,m
and hy(x*) =0, foralli=1,..,r

Dual Feasibility Condition

u;‘ >0, forali=1,..,m

KKT conditions are necessary to find an optimum solution but
are not necessarily sufficient. However, for convex optimization
problems that satisfy Slater’s condition, KKT conditions are also
sufficient for finding an optimal solution, for proof we refer to
section 5.5.3 of [5].

2.2 Optimization Techniques

In this section, we discuss a few iterative methods for solving con-
vex optimization problems. First we consider a simple problem,
an unconstrained optimization problem as:

minimize f(x), (19)

For convex optimization
problems that satisfy
Slater’s condition, KKT
conditions are also
sufficient for finding an
optimal solution.
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where f is convex and differentiable. Let us assume that x* is
an optimal point such that minf(x) = f(x*). Since f is differen-
tiable and convex, and x* is optimal, then from KKT stationarity
condition the following must hold:

Vf(x*) = 0. (20)

Thus, by solving (20), we also get the solution for the uncon-
strained optimization problem (19). (20) is a set of p equations in
p variables and mostly it can be solved by iterative algorithms.

An iterative algorithm produces a minimizing sequence x', t =
1,... and it is terminated when a predetermined convergence cri-
terion is met. An iterative algorithm is called descent method
when f(x**1) < f(x*) and the step function x*! is computed as:

A= X+ SAX, (21)

where Ax is called the step direction and s’ is called the step
size. In the following, we briefly study the gradient descent, sub-
gradient and coordinate descent methods for solving convex op-
timization problems. For details on step size and convergence
analysis for the gradient methods we refer to chapter 9 of [5].

2.2.1 Gradient Descent Methods

When the step direction in (21), is in the opposite direction of the
gradient of the objective function, the descent algorithm is called
the gradient descent algorithm. Thus, by substituting gradient
direction Ax = -V f(x) in (21), we get the step function of the
gradient descent as:

K= X = V). (22)
2.2.2 Sub-gradient Method

The iterative method is called sub-gradient method when the step
function is defined as:

xl+l — xl _ Stq(xt), (23)

where g(x') is a sub-gradient of f at x’. It is also defined for the
f that is convex but not necessarily differentiable.
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2.2.3 Coordinate Descent Method

Now, we consider an objective function, f, that is convex but
not necessarily differentiable and it can be split into differentiable
and non-differentiable components. For example, f = fd + fc,
where fd is convex and differentiable, and fc is convex but non-
differentiable.

When the objective function, f, is differentiable or the non-differentiable

component of f, is separable such that fc(x) = le.’zl fei(xy),
where each fc; is convex, then the objective function f, can be
minimized coordinate-wise. See [7] for how such coordinate-
wise minimization converges to the global minimum. For exam-
ple, the step function for the coordinate-wise sub-gradient method
is defined as:

+1 _ ot t 1 1
x0T =x = sq(xg, .., xp)

t+1 _ ot t t+1 .t t
Xy =Xy —sq(x], x5, xp)

+1 _ .t t t+1 t+1 t
X, =Xp,—S q(xy ", ...,xp_l,xp).

2.3 Least Squares Regression

In this section, we define the least squares method for the linear
regression problem (5). The ordinary least squares (OLS) tech-
nique is the most commonly used method for estimating the un-
known parameters in a linear regression model by minimizing the
residual some of squares. The ordinary least squares estimator
can be viewed as an unconstrained quadratic programming prob-
lem:

R 1
Bovs := argmin {;uY - Xﬂui}. (24)

BERP?

Assuming the design matrix X has full column rank (otherwise
one may use generalized inverse), when p < n, the OLS estimator,
BOLS, has a closed form solution:

Bors = XTX)"'XTY,
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The variable selection
problem is also referred

to as the problem of

subset selection, that is

to select an optimal

subset of predictors for

estimation and
prediction.

The OLS estimator has well known properties, i.e., Gauss-Markov
and Maximum Likelihood etc., for more details we refer to chap-
ter 3 of [2] and chapter 3 of [8].

2.4 The Variable Selection Problem

The variable selection problem is also referred to as the problem
of subset selection, that is to select an optimal subset of predic-
tors for estimation and prediction. Subset selection is an impor-
tant issue particularly when p is large and it is believed that many
covariates are redundant or irrelevant. In the context of linear re-
gression, the subset selection problem is to select and fit a model
of the form:

Y= XS,BS + €,

where § C {1,..., p} is the active set, Xy is the columns and SBs
is the vector of regression coefficients corresponding to subset S.
Since the active set S is not known, there is uncertainty about
which subset (from 27 subsets) to use. Some standard methods of
subset selection are forward selection, backward elimination, and
the combination of the two (i.e., forward selection steps followed
by backward elimination steps). There is a large literature on
variable selection methods for linear models (see [9] and [10])
and for high dimensional problems (see [11] and [12]).

3. The LASSO

We consider the linear regression model (5) for high dimensional
cases, where the number of unknown parameters to be estimated
is much higher than the number of observations. For p > n, the
linear regression model (5), is an ill-posed problem (a problem
which may have more than one solution). In order to solve this
ill-posed problem, we need to introduce some constraints or reg-
ularizations to the estimation process. As mentioned previously,
the LASSO is an ¢;-regularized regression method. It estimates
the regression coeflicients by solving the following constrained
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least squares problem:

1
minimize {—||Y—Xﬁ||§} subject to ||Bl; <1, (25)
BeRP n

where ¢ is a budget on the £1-norm and the LASSO finds the best
fit within this constraint. If ¢ is equal to or greater than the ;-
norm of the OLS estimator, then the LASSO estimator is the same
as the OLS estimator. When ¢ is smaller than the £;-norm of the
OLS estimator then the LASSO shrinks the estimated regression
coeflicients towards zero, and it may set some of the coefficients
to exactly equal to zero.

The Lagrange function (penalized regression) corresponding to
the constrained regression problem (25) is given by equation (6).
It can be shown that there is a one-to-one correspondence between
t and A. In other words, for a given A > 0, there exists a¢ > 0
such that the two problems share the same solution (see [13]). We
consider Lagrangian or penalized LASSO problem (6) for the rest
of the article. In general, the LASSO lacks in closed form solution
because the the objective function is not differentiable. However,
it is possible to obtain closed form solutions for the special case
of an orthonormal design matrix. Different interpretations (for
the different scenarios) of the LASSO solution is discussed as
follows.

3.1 Single Variable Case

We first illustrate the LASSO solution for simple linear regres-
sion, where p = 1 and Y = X + € . The optimization problem
is given as:

1
minimize {—llY X5 + 4 |,31|} .
B1eR n

Suppose f; is a solution of the above optimization problem, then
from the KKT stationarity condition, the sub-differential must
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contain zero.
2 ~ oA
—;X{(Y - X1B1) + 4 sign(B) = 0,
1 T A /1 . A
;Xl Y -Xi61) = 3 sign(By).

Note that %X{Xl = 1, as we are assuming predictors are stan-
dardized.

.1 A .
Pr=—X{Y - 3 sign(B1)

IXTy +4 if IXTy <-4
Bi=40 if IXTY| < 4

1T A e 1w T A
ZXIY_E lsz1Y>§

Do Xy
which is the same as the term —— soft-thresholded by %,

Xy

n

Bi = Sa(

)- (26)

Hence, the LASSO estimator for the single variable case can also

be computed by soft-thresholding the OLS estimator by amount
A

2
B = Sg(ﬁom),

A xTy
where Bors = ——.

3.2 Orthonormal Design Case

Next, we derive the LASSO estimator for orthonormal design
case. Here we assume variables are uncorrelated that implies
X!X; =0foreachi# jand 1X"X = I,,.

Suppose f3 is a solution of the optimization problem given in (6),
then from the KKT stationarity condition we get:

2 . .
—ZXT(Y - XPB) + A sign(B) = 0,

lXT(Y -Xp) = A sign(P).
n 2
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Here %XTX = I,. It follows that,
1

A A A
B==-X"Y - = sign(B)
n 2
A 1xXTY);+4  ifix'y); < -4

Bi=40 if TIXTY);l < 3

1xTy); -4 ifix’y); > 4

The coefficient 3 ; is then computed by soft-thresholding the jh
row of (Bors); = (;X"Y);, by 4.

3.3 Multiple Predictors Case

In the following, we show that in general, the LASSO estimator
has no closed form solution. Basically, we try to solve it for one
component and we show that our solution for one component is
dependent on all other components. Here, we assume that X has
full column rank, therefore X’ X is invertible. Let X_ ;j denotes
all the columns except j” column, and similarly 3_ j denotes the
parameter vector except ;. Suppose that B ; is a solution of jh
component 3;, then from the KKT stationarity condition we get
the following:

2 A L oA
=X} (Y = X_j8_; - B;X;) + A sign(B;) = 0.
Further simplification lead to the following:
2XTY + 2X7X 2 X% A sign(B;) =0
= Xj +; G X_B-j+ ,BJ-T+ sign(B;) = 0.
. X'X; ) . A
Since —/— =1, we have the following solution for £3;.

Bj= %Xf (Y-X_;8.)- % sign(B).
Now, we notice that the solution of one §; is dependent upon
all the other components S, ;, therefore there is no closed form
solution. For the orthonormal design case, the cross term X]TX_ j
vanishes due to orthogonality and we have a closed form solution.
Though in general, the LASSO has no closed form solution, it
can be solved efficiently due to its convex optimization form. We
discuss coordinate descent algorithm for the LASSO in section 4.
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3.4 High-dimensional Case

For the high-dimensional case, the OLS estimator does not make
any sense. In fact the optimization problem (24) can not be solved
unless we make some assumption. Here, we assume sparsity that
is the underlying true model is sparse, and we seek a sparse so-
lution where many components of the vector 3 are zero. The
LASSO gives sparse solutions. Depending on the amount of reg-
ularization, the LASSO sets some of the coefficients to exactly
zero. So the LASSO performs estimation as well as variable
selection. As we mentioned earlier, though the LASSO lacks
a closed form solution in general, it can be solved efficiently
due to its convex optimization form. There are various itera-
tive algorithms for computing solution of the LASSO for high-
dimensional setting (i.e., see [14], [15], and [16]). We discuss
coordinate descent algorithm for the LASSO in section 4.

3.5 Bayesian Interpretation of the LASSO Method

The estimated values of regression coefficients through LASSO
can also be interpreted as Bayesian maximum a posteriori (MAP)
estimate; that is, if we assume IID double-exponential (Laplace)
prior on regression coefficients, then the Bayesian MAP estimates
are the same as the LASSO estimates. Here, we consider a hierar-
chical Bayesian model Y ~ N,(Xg, o21,) and Bi ~ Double Exp(A|B;]).
Without loss of generality we can assume o> = 1. It is described

as follows, see [17] for the complete derivation.

YIX, 8 ~ Nu(XB, I,)
iid A
Brs B s Bpld 5 exp(=AIBi)

PBIX,Y, A) o« P(Y[X, B)P(B|).
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Consider the MAP estimation of 8 under this model.

BMAP = arg max {IOg P (BlX’Y’ /1)}
BERP

= ar[% félpax {log [P (YIX, ) P (BIV]}

P(Y[X,B) 1_[ P('BM)I}

= arg max {log
i=1

BERP

= arg max {log P(YIX,B) + Z log P ,BJIA)}

BERP? =

The first term of the RHS can be given as:

1 1
P(YX.B) = sy €XP (—EIIY - Xﬁn%) :

Taking log and ignoring constant terms we get:
arg max {log P (Y|X, 8)} = arg max {——IIY Xﬁll%}. 27
BERP BeRP
We can simplify the second term as:

p
arg max {Z log P ,BJI/l } = —/IZ 1Bl = =Bl (28)
=1

BER?

Thus, from equations (27) and (28) we get,

Buap = arg max {——IIY XBll; - ﬂlWlh}

BERP
(1
= arg min {EHY ~Xpl1% + AILBIh}
BER?

N

21
=4 (—) (the LASSO estimator, estimated at 24/n ).
n

3.6 LASSO as a Variable Selection Method

The classical variables selection methods (i.e., subset selection
method) are not feasible in high dimension case because the num-
ber of feature subsets, 27, is too large. The LASSO method can
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Figure 3. Constrained re-
gion for the LASSO.

B2

e

be used as a variable selection method. The geometric of the
¢1-norm penalty of the LASSO leads to variable selection. For
example, for p = 2 case, the constrained region for the LASSO is
a rotated square |81] + |82| < ¢, as illustrated in Figure 3. The plot
of the residual sum of squares are ellipses centred at the OLS esti-
mate. The first point where the ellipse touches the rotated square
corresponds to the LASSO solution. If that first point is a vertex
of the square, then the LASSO solution can have one coefficient
equal to zero, 81 = 0 in this case. For more details we refer to the
original LASSO paper [4] and section 3.4 of [2].

4. Computation of the LASSO Solution

In this section, we study coordinate descent method for comput-
ing LASSO solutions.

We note that for a fixed A, (6) is a quadratic programming problem
in parameter 8. So for each A, we have a solution for (6). Since 4
controls the amount of regularization, we need a disciplined way
of selecting 4, i.e., cross-validation, bootstrapping, etc. If 1 = 0
the LASSO is the same as OLS. As A increases, the number of
non-zero components of 3 decreases, at 1 = co, the LASSO gives
the null model where 3 = 0. Typically, we choose the value of A
that minimizes the expected prediction error, this can be handled
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separately as a model selection problem. For details see [18].

4.1 Coordinate Descent for the LASSO

The LASSO objective function can be split into two parts — dif-
ferentiable part fd = ||Y — XBII% and non-differentiable part fc =

?:1 |8;. The non-differentiable part fc = Z?Zl |8;l is strictly
convex in each coordinate. Hence, we can apply coordinate wise
minimization. We have seen that with a single predictor, the

LASSO solution has a closed form solution, and is a soft-thresholded

version of the least squares estimate. We exploit this property to
implement the coordinate descent algorithm for the LASSO as
follows.

As discussed previously, coordinate descent is an iterative method
that solves exactly for one variable, keeping all other variables
fixed. For each coordinate sub-problem, we fix all components
of 8 except the jth component B;. Let X; denote the jth column
of X and X_; denote all the columns except jth column, then the
problem is to find,

arg min l||Y —X_B-j = BX,I5 + B + /lZ Bile. (29)
Bier |1t 1]
Define r; := Y — X_;5_;, as partial residual (the partial residual
is the difference between actual response Y and that portion of
the fitted model that does not involve variable X ;). Then the the
problem (29) can be viewed as a univariate LASSO problem with
vector r; being the response variable.

1
arg min —||rj—ﬁjxj||§+awj|+a§ 1Bil} . (30)
Bier |1 1)

Suppose 3 ; 18 a solution of the above optimization problem, then
from the KKT stationarity condition we get the following:

2 5 o
—;Xf(rj - BjX;) + A sign(B;) = 0,

A~ A A
T .
;rj X;-pj= 3 sign(B.)
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Then the OLS estimator for the j* variable can be computed as
([B’OLS )j = %rTX j- Therefore univariate LASSO solution can be
computed by soft-thresholding the OLS estimator as follows.

Bj= Sg((ﬁom)j)

Algorithm 1: CoordDesc Algorithm

Input: dataset (Y, X)

Output: 3:= LASSO estimated vector of regression
coefficients

Initialize 8 = 0

repeat

for each je{l,...,p}do
Compute the partial residual r;, where

ri=Y-) Xp

I#j

Compute OLS coefficient for single predictor
A 1,
Bors)j = g X,
Update S (LASSO solution: single variable case)

Bj= Sg((fi’om)j)

end

until convergence;
B=p

return 3

5. Applications

In this section, we consider a low dimensional simulation exam-
ple for comparing prediction performance of the LASSO and the
OLS regression. We also consider a high dimensional real world
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problems, where we apply the LASSO method for estimation and
variable selection.

5.1 Simulation Example

We consider the same simulation setup as given in the introduc-
tion section but with modified simulation steps as follows.

Modified Simulation Steps

1. Generate an error vector as €,x; ~ N, (0, I,,) and then compute a
response vector as Y = XB° + €.

2. Generate another error vector as €,x; ~ N,(0, I,,) and then com-
pute a new response vector as Y.y = XA + e

3. Compute the OLS fit XBors = X(X'X)'XTY.

4. Compute the prediction error for OLS, as PE(OLS) = %IIY,M -
XBous|l3-

5. Define a grid of 50 values of A equally spaced between 0 and 1,
as Agq = 10,0.02,...,1].

6. Compute the LASSO estimator B(/l) for each 4 € Ay, (using
coordinate descent or LARS algorithm, etc.), and then compute
the LASSO fit for each LASSO estimator as X3(1).

7. Compute the prediction error for the LASSO for each A € Ay,
as PE(LASS 0, ) = 1||[Y o — XBDI3.

8. Compute the number of correct zero coefficients for each LASSO

estimator (1) as, NZC(B(1)) = ¥, 1(B(2)); = 0), where 1 is

an indicator function.

We run the modified simulation steps for 100 times, and compute
the expected prediction error (EPE) for the OLS and the LASSO
by taking the average of the prediction error over 100 simulations.
For the LASSO, the optimal estimator is the one that minimizes
the EPE, and the corresponding A value is the optimal tuning pa-
rameter say Ad,,,. We also compute the expected (correct) zero
coefficients at A,,;. These results are reported in the Table 2 and
Figure 4. From the Table 2, it is clear that the LASSO estimator
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Table 2. Simulation results
for the OLS and the LASSO.

Figure 4. Comparision of
the OLS and the LASSO.

Method EPE  Average NZC
OLS 1.508 0
LASSO (0.102) 1.349 9.03
o - LS
< i — Lasso
5 o !
@ = !
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s @ :
3 o ,
3 ow |
g 89
g 2
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Amount of shrinkage

at A,,; almost correctly (9 out of 10) identifies the zero compo-
nents of the true 8°. Figure 4 and Table 2, shows that EPE of the
LASSO estimator at A, is less than the EPE of the OLS estima-
tor.

5.2 Real Data Example

We consider a real dataset of riboflavin. It consists of n = 71
observations of p = 4088 predictors (gene expressions) and a
univariate response, riboflavin production rate (log-transformed).
We refer to [19] for details on riboflavin dataset.

We use the ten-fold cross-validation procedure to select the opti-
mal tuning parameters from a suitable grid of values. The perfor-
mance measures (EPE and number of non-zero coefficients) are
reported in Table 3. We do not report OLS results here, since the
number of observations is much less than the number of covari-
ates, and hence the OLS estimates are unstable.
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Table 3. LASSO results on
riboflavin dataset.

Method (4,;) EPE  Average NZC
LASSO (0.036) 0.183 4047

6. Computational Details

Statistical analysis was performed in R 3.2.2. We used the pack-
age ‘MASS’ for OLS regression and the package ‘glmnet’ for
penalized regression method (the LASSO). All of our simulation
code is available at request.

7. Concluding Remarks

The aim of this paper was to provide an introduction of the LASSO
method as a constrained quadratic programming problem, and to
discuss convex optimization based approach to solve the LASSO
problem. We also discussed the situations when the LASSO prob-
lem has closed form solutions and for high dimensional case we
considered an iterative method, coordinate descent algorithm. We
also described the Bayesian interpretation of the LASSO esti-
mates and the LASSO as a variable selection method. We have il-
lustrated the applications of the LASSO using simulated and real
data examples.
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