CLASSICS

Shobhana Narasimhan’s article ‘A Tryst With Density’ in this issue of Resonance describes a remarkable
theorem proved by Hohenberg and Kohn in 1964, and its aftermath. These authors considered a system of
electrons in an external potential. This is an excellent idealised model of an atom, molecule or solid because
the nuclei are so much heavier than the electrons and can be treated as an external potential. The difficulty
lies in accounting for the interaction between the electrons — what one electron is doing depends on what
all the others are doing. It therefore came as a shock when the ground state energy of this very general
and nontrivial system was shown by Hohenberg and Kohn to be the result of minimising an expression
which only contained a function of three variables. This function was just the number of electrons per unit
volume as a function of position, something which chemists and crystallographers had long dealt with as a
very meaningful and measurable quantity. The theorem showed that such an expression exists, but did not
provide the form, which could contain nonlinear terms, derivatives, and integrals of the electron density.
While approximate theories of this kind had been proposed before, it was unexpected that the idea of using
the electron density could be made exact. What a marvellous turn of events that an existence theorem,
proved by contradiction in a modestly written paper would revolutionise the modeling of materials half a
century later and win a Nobel Prize in Chemistry for one of the authors!

Even more surprising was that this proof needed no fireworks of many-body theory, which was just begin-
ning to bloom in 1964 (and of which Kohn himself was a leading exponent). A second course on quantum
mechanics is all that is needed — in particular, the variational principle for the ground state energy of a
system. This simply states that if we evaluate the expectation of the energy with the ‘wrong’ wave func-
tion — that is, any wave function except the true, (assumed nondegenerate) ground state wave function, one
will get an answer higher than the true ground state energy. Readers armed with this can enjoy the terse,
elegant proof. They need not be put-off by the use of quantum field operators (which usually belong to a
third course in quantum theory), they only play the role of a concise language to express the kinetic energy,
energy in the external potential, and interaction between the electrons. The proof can be followed from

equations 6, 7, and 8 of Section I of the paper reproduced here.
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This paper deals with the ground state of an interacting electron gas in an external potential o(r). It is
proved that there exists a universal functional of the density, F[#(r)], independent of 2(r), such that the ex-
pression E= [v(t)n(r)dr+F[n(r) ] has as its minimum value the correct ground-state energy associated with
o(r). The functional F[n(r)] is then discussed for two situations: (1) n(r)=no+7i(r), /ne<<1, and
(2) n(xr) = ¢(r/ro) with g arbitrary and ro —«. In both cases F can be expressed entirely in terms of the cor-
relation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach
also sheds some light on generalized Thomas-Fermi methods and their limitations. Some new extensions of

these methods are presented.

INTRODUCTION

URING the last decade there has been considerable
progress in understanding the properties of a
homogeneous interacting electron gas.! The point of
view has been, in general, to regard the electrons as
similar to a collection of mnoninteracting particles
with the important additional concept of collective
excitations.

On the other hand, there has been in existence since
the 1920’s a different approach, represented by the
Thomas-Fermi method? and its refinements, in which
the electronic density n(r) plays a central role and in
which the system of electrons is pictured more like a
classical liquid. This approach has been useful, up to
now, for simple though crude descriptions of inhomo-
geneous systems like atoms and impurities in metals.

Lately there have been also some important advances
along this second line of approach, such as the work of
Kompaneets and Pavlovskii,? Kirzhnits* Lewis,” Baraff
and Borowitz,® Baraff,” and DuBois and Kivelson.® The
present paper represents a contribution in the same area.

In Part I, we develop an exact formal variational
principle for the ground-state energy, in which the den-
sity n(r) is the variable function. Into this principle
enters a universal functional F[#(r)], which applies to
all electronic systems in their ground state no matter
what the external potential is. The main objective of
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theoretical considerations is a description of this
functional. Once known, it is relatively easy to deter-
mine the ground-state energy in a given external
potential.

In Part II, we obtain an expression for F[n] when n
deviates only slightly from uniformity, ie., n(r)=n,
+4i(r), with #/ne— 0. In this case F[n] is entirely
expressible in terms of the exact ground-state energy
and the exact electronic polarizability a(g) of a uniform
electron gas. This procedure will describe correctly
the long-range Friedel charge oscillations® set up by
a localized perturbation. All previous refinements of the
Thomas-Fermi method have failed to include these.

In Part IIT we consider the case of a slowly varying,
but not necessarily almost constant density, #n(r)
= ¢(r/r0), ro— . For this case we derive an expansion
of F[n] in successive orders of 7! or, equivalently of
the gradient operator ¥ acting on #(r). The expansion
coefficients are again expressible in terms of the exact
ground-state energy and the exact linear, quadratic,
etc., electric response functions of a uniform electron
gas to an external potential o(r). In this way we recover,
quite simply, all previously developed refinements of
the Thomas-Fermi method and are able to carry them
somewhat further. Comparison of this case with the
nearly uniform one, discussed in Part II, also reveals
why the gradient expansion is intrinsically incapable
of properly describing the Friedel oscillations or the
radial oscillations of the electronic density in an atom
which reflect the electronic shell structure. A partial
summation of the gradient expansion can be carried
out (Sec. IIL.4), but its usefulness has not yet been
tested.

I. EXACT GENERAL FORMULATION

1. The Density as Basic Variable

We shall be considering a collection of an arbitrary
number of electrons, enclosed in a large box and moving

9 J. Friedel, Phil. Mag. 43, 153 (1952).

B 864

810

RESONANCE | August 2017



CLASSICS

INHOMOGENEOUS ELECTRON GAS B 865

under the influence of an external potential #(r) and
the muiual Coulomb repulsion. The Hamiltonian has
the form

H=T+V+10, n
where!®
1
7= f SO )V (n)dr, 2)
Ve f H(EWH (N, )

{ipee 3§
“-if|‘t_,r|i’(r}"'(()‘“lr]ﬂr)rmh'_ )

We shall in all that follows assume for simplicity that
we are only dealing with gituations in which the ground
state is nondegenerate. We denote the electronic density
in the ground state ¥ by

nir)= (T (O (0¥}, (3}

which is clearly a functional of o{r).

We shall now show that conversely w(r) is a unique
functional of a(r), apart from a trivial additive constant.

The proof proceeds by reduclio ad absardum. As-
sume that another potential o (r), with ground state
¥ gives rise to the same density nir}. Now clearly
[unless o'{r)—o{r)=const] ¥ cannot be equal to T
since they satisfy different Schrodinger equations.
Hence, if we denote the Hamiltonian and ground-state
energies associated with ¥ and ¥ by H, H' and E, £,
we have by the minimal property of the ground state,

E'=( V)< (¥ V)= (¥ (H+ V= F¥),
20 that
J—:'<E+f|jf(r)—u[r3:|n{r)dz. (6)

Interchanging primed and unprimed quantities, we find
in exactly the same way that

E<E+ f Cole)—v' () Ju{e)dr. (7

Addition of {6) and (7) leads to the inconsistency
E4+E<E+E. (8)

Thus o(r) is (to within a constant) a unigue functional
of n(r); since, in turn, v(r) fxes H we see that the full
many-particle ground state is & unique functional of
#(r).

2. The Variational Principle

Since ¥ is a functional of #(r), %o is evidently the
kinetic and interaction energy. We therefore define

R FLulr) =¥, (T+U)¥), )

1 Atomic units are used.

where F[n] is a universal functional, valid for any
number of particles and auy external potential. This
functional plays a central role in the present paper.

With its aid we define, for a given potential o(r), the
energy functional

FE.[J:]=fﬂ[r}lml{r)-ir+F[n], (1m

Clearly, for the correct n(r), E[n] equals the ground-
state energy .

We shall now show that £,[»] assumes its minimum
value for the correct wir), if the admissible functions
are restricted by the condition

_-'.'[u:|=fn(l}¢'r=ﬂ’. 11}

It is well known that for a system of N particles, the
energy functional of ¥

E[¥ )= (0 V¥ (¥, (THUW) (1)

has & minimum at the correct ground state ¥, relative
to arbitrary variations of ¥ in which the number of
particles is kept constant. In particular, let % be the
ground state associated with a different external po-
tential #*(r), Then, by (12) and (9}

£[%]= f ale)n’ ()de-+-FL',
{13)
-2 E,E'Er]—fv (ryn{rpdrFLn].

Thus the minimal property of (10) is established rela-
tive to all density functions #'(r) associated with some
ather external potential o*{r).®

Ti F{#] were a known and sufficiently simple func-
tional of #, the problem of determining the ground-gtate
energy and density in a given external potential would
be rather eagy since it requires merely the minimization
of & functional of the three-dimensional density func-
tion. The major part of the complexities of the many-
electron problems are associated with the determination
of the universal functional F{a].

1L This is obvious sinee the number of particles & itself a simple
. ehithar wo ek itive density distri
& CRNDG. prove an arkotrary positive denmity disin-
bution #*(rl, wﬂd satisfies the condition v’ (Flde = integer, can
bt rea by some external patential 37(r). Clearly, to first order
in A(r}, nny distribution of the foem w0 =m0 can be so
reali we believe that in fact all, excepl some pathologieal
distribations, can be realized,

RESONANCE | August 2017

-

811





