Taylor’s theorem in analysis provides a way of approximating an \(n+1 \)-times differentiable real function by an \(n \)th degree polynomial in a neighbourhood of a point \(x_0 \). The usefulness of the theorem lies in the fact that if the bounds on \(|f^{(n+1)}(x)| \) are known, then the error introduced by the polynomial approximation can be estimated. So while Taylor’s theorem provides an extremely useful manner of approximating the given function to a desired degree of precision in a neighbourhood of a given point, it says nothing about the nature of the polynomial approximation itself, and intuitive arguments are often offered to explain why the derivatives of \(f \) must figure in the coefficients of such a polynomial. In what follows, we shall attempt a rigorous explanation of the sense in which such a polynomial is the ‘best’ approximation of the given function.

Linear Approximations

To begin with, let us consider a linear approximation \(g(x) = a(x - x_0) + b \) of a differentiable function \(f(x) \) at the point \(P(x_0, f(x_0)) \). Evidently if the line \(g(x) \)
While Taylor’s theorem provides an extremely useful manner of approximating the given function to a desired degree of precision in a neighbourhood of a given point, it says nothing about the nature of the polynomial approximation itself.

Instead of considering just \(\lim_{x \to x_0} g(x) \), let us consider \(\lim_{x \to x_0} \frac{g(x) - f(x)}{x - x_0} \). Clearly this limit is \(a - f'(x_0) \). If \(a \neq f'(x_0) \) then \(\lim_{x \to x_0} \frac{g(x) - f(x)}{x - x_0} \neq 0 \). Only the line passing through \(P \) with slope \(a = f'(x_0) \) would yield \(\lim_{x \to x_0} \frac{g(x) - f(x)}{x - x_0} = 0 \). Qualitatively this fact could be interpreted as follows: Whereas any line passing through \(P \) differs from \(f \), at a point \(x \) beside \(x_0 \), by a quantity which tends to zero as \(x \) tends to \(x_0 \), the line with slope \(f'(x_0) \) is the only line for which this difference is much smaller in relation to \(x - x_0 \). In this sense, \(g(x) = f'(x_0)(x - x_0) + f(x_0) \) is a better linear approximation of \(f \) at \(x_0 \) than any other linear approximation.

Let us now formalize this idea and then generalize it to polynomial approximations of any desired degree \(n \). For this we introduce the concept of infinitesimals. We shall use infinitesimals to define which of two approximations of a function is ‘better’. This will then allow us to determine the required ‘best’ approximation for the function \(f \) in a neighbourhood of a point \(x_0 \).

Infinitesimals

A function \(\alpha(x) \) is an infinitesimal as \(x \to a \) if \(\lim_{x \to a} \alpha(x) = 0 \) where \(a \) is either real or \(\pm \infty \).

If \(\alpha, \beta \) are infinitesimals as \(x \to a \), we say that they are of the same order if \(\lim_{x \to a} \frac{\beta}{\alpha} = A \), where \(A \) is any non-zero real number and we say that \(\beta \) is an infinitesimal of higher order than \(\alpha \) if \(\lim_{x \to a} \frac{\beta}{\alpha} = 0 \). Additionally we say that \(\beta \) is an infinitesimal of order \(k \) with respect to \(\alpha \) as \(x \to a \) if \(\lim_{x \to a} \frac{\beta}{\alpha^k} = A \neq 0 \).
Whereas any line passing through P differs from \(f \), at a point \(x \) beside \(x_0 \), by a quantity which tends to zero as \(x \) tends to \(x_0 \), the line with slope \(f'(x_0) \) is the only line for which this difference is much smaller in relation to \(x - x_0 \).

Given an arbitrary function \(f \) and two function \(g_1 \) and \(g_2 \), we say that \(g_1 \) is a better approximation of \(f \) than \(g_2 \) in a neighbourhood of \(x_0 \) if \(f - g_1 \) is an infinitesimal of higher order with respect to \(x - x_0 \) than \(f - g_2 \), as \(x \to a \).

Theorem 1. Let \(f \) and \(g \) be \(n \)-times differentiable functions in a neighbourhood of \(x_0 \). Then \(f - g \) is an infinitesimal of order greater than \(n \) with respect to \(x - x_0 \) as \(x \to x_0 \) if and only if \(f^{(i)}(x_0) = g^{(i)}(x_0) \) for \(i = 0, \ldots, n \).

Proof. L’Hôpital’s Rule states that if \(f \) and \(g \) are real and differentiable functions in \((a, b) \) and \(g'(x) \neq 0 \) for all \(x \in (a, b) \) and \(\lim_{x \to x_0} \frac{f'(x)}{g'(x)} \) exists then \(\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} \).

Suppose \(f^{(i)}(x_0) = g^{(i)}(x_0) \) for \(i = 0, \ldots, n \). By differentiating the numerator and denominator \(n \)-times we get the following:

\[
\lim_{x \to x_0} \frac{f(x) - g(x)}{(x - x_0)^n} = \lim_{x \to x_0} \frac{f'(x) - g'(x)}{n!} = \ldots = \lim_{x \to x_0} \frac{f^{(n)}(x) - g^{(n)}(x)}{n!} = 0.
\]

Thus by applying L’Hôpital’s Rule \(n \) times we get the desired equality \(\lim_{x \to x_0} \frac{f(x) - g(x)}{(x - x_0)^n} = 0 \) and it follows that \(f - g \) is an infinitesimal of order greater than \(n \) with respect to \(x - x_0 \) as \(x \to x_0 \).

Conversely assume that \(f - g \) is an infinitesimal of order greater than \(n \) with respect to \(x - x_0 \) as \(x \to x_0 \) and that there exists a positive integer \(k \leq n \) such that \(f^{(k)}(x_0) \neq g^{(k)}(x_0) \). Let \(i \) be the smallest such positive integer.

Applying L’Hôpital’s Rule \(i \) times gives us the following:

\[
\lim_{x \to x_0} \frac{f(x) - g(x)}{(x - x_0)^i} = \lim_{x \to x_0} \frac{f'(x) - g'(x)}{i!} = \ldots = \lim_{x \to x_0} \frac{f^{(i-1)}(x) - g^{(i-1)}(x)}{i!} = \lim_{x \to x_0} \frac{f^{(i)}(x) - g^{(i)}(x)}{i!} \neq 0.
\]

It follows that \(f - g \) is an infinitesimal of order \(i \leq n \) with respect to \(x - x_0 \) as \(x \to x_0 \) contradicting the assumption that \(f - g \) is an infinitesimal of order greater than \(n \) with
respect to $x - x_0$ as $x \to x_0$.

Thus $f - g$ is an infinitesimal of order greater than n with respect to $x - x_0$ as $x \to x_0$ if and only if $f^{(i)}(x_0) = g^{(i)}(x_0)$ for $i = 0, \ldots, n$.

Best Polynomial Approximation

We define a best polynomial approximation of degree n to an $n+1$-times differentiable real function f in a neighbourhood of a point x_0 to be the polynomial $P_n(x)$ such that $f - P_n$ is an infinitesimal of order greater than n with respect to $x - x_0$ as $x \to x_0$.

Let $A_n(x)$ denote a polynomial of degree n. We shall now show with proof what the nature of the coefficients of $A_n(x)$ need to be for it to be the best polynomial approximation of degree n of the function f in a neighbourhood of the point x_0.

Theorem 2. The best polynomial approximation of degree n to an $n+1$-times differentiable real function f in a neighbourhood of a point x_0 is

$$P_n(x) = f(x_0) + f'(x_0)(x_0 - x) + \frac{f^{(2)}(x_0)}{2!}(x_0 - x)^2 + \ldots + \frac{f^{(n)}(x_0)}{n!}(x_0 - x)^n.$$

Proof. Let us consider an arbitrary nth degree polynomial centred at x_0

$$A_n(x) = a_n(x-x_0)^n + a_{n-1}(x-x_0)^{n-1} + \ldots + a_1(x-x_0) + a_0.$$

A necessary and sufficient condition for $f - A_n(x)$ to be an infinitesimal of order greater than n with respect to $x - x_0$ as $x \to x_0$ is, by Theorem 1, that $A_n^{(i)}(x_0) = f^{(i)}(x_0)$ for all $i = 0, \ldots, n$.

Thus $A_n^{(i)}(x_0) = i!a_i = f^{(i)}(x_0)$ and hence $a_i = \frac{f^{(i)}(x_0)}{i!}$. A comparison with the coefficients of P_n allows us to conclude that $f - P_n$ is an infinitesimal of order greater than n with respect to $x - x_0$ as $x \to x_0$. If for any $i, a_i \neq \frac{f^{(i)}(x_0)}{i!}$ then clearly $f - A_n$ would be an infinitesimal of
order at most n with respect to $x - x_0$. Thus if $A_n(x) \neq P_n(x)$, A_n would be a worse approximation of f than P_n.

We have thus shown that

$$P_n(x) = f(x_0) + f'(x_0)(x_0 - x) + \frac{f''(x_0)}{2!}(x_0 - x)^2 + \ldots$$

$$+ \frac{f^n(x_0)}{n!}(x_0 - x)^n$$

is the best polynomial approximation of degree n of the function $f(x)$ in a neighbourhood of x_0, with a suitable elaboration of the sense in which such a polynomial qualifies as ‘best’ approximation.