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The states of radiation of a single frequency and
polarization propagating in free space are very
conveniently represented by those of a quantum
mechanical simple harmonic oscillator. This fact
is exploited, together with the Ehrenfest theo-
rem, to map the time evolution of the radiation
to the dynamics of the oscillator. This enables a
graphical comparison of the behaviour of classi-
cal and nonclassical states of radiation.

1. Introduction

In the ¯rst part1 of this article, we have introduced
Ehrenfest's theorem and discussed its role as a bridge be-
tween classical mechanics (CM) and quantum mechanics
(QM). In this second part, we shall use the example of
the states of a single-mode electromagnetic ¯eld to illus-
trate the theorem in action under various circumstances.
In particular, a speci¯c representation for these states
will help us relate them to the states of a quantum me-
chanical oscillator. In turn, this will enable us to present
a pictorial description of the evolution of the probability
density concerned.

Several interesting states of radiation have been pro-
posed and studied in quantum optics. The experimen-
tal realization of these states is a continuing endeavour.
Many of these states exhibit properties which have no
classical counterparts. In what follows we shall deal in
particular, with the departures from `classicality' exhib-
ited by certain quantum states of radiation. For this
purpose, we begin with a brief pedagogical account of
how radiation is described in quantum mechanics.
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2. Quantum States of the Radiation Field

Quantum optics is concerned with the description and
behaviour of various states of light (or the quantized
electromagnetic ¯eld) as it interacts with atomic media.
For the sake of simplicity, we restrict our attention to
electromagnetic waves of a given wave vector k and state
of polarization { either left- or right-circularly polarized.
The frequency ! of the radiation is known in terms of
its wave vector. For radiation propagating in free space,
this relation is just ! = cjkj. Quantization of the elec-
tromagnetic ¯eld shows that light of a given wave vector
and state of polarization can be treated as a superposi-
tion of photon-number states or `Fock states' jni, where
n = 0; 1; 2; : : : ad in¯nitum. As the name implies, the
number of photons present in the state jni is precisely
n. Moreover { and this is crucial {

² there is a one-to-one correspondence between the set
fjnig of these Fock states and the familiar set of nor-
malized eigenstates of the Hamiltonian of the linear har-
monic oscillator.

² Quantization of the electromagnetic ¯eld therefore
amounts to considering it as a (continuously in¯nite)
collection of quantum mechanical linear harmonic oscil-
lators, one oscillator for each wave vector and polariza-
tion state.

This sort of relationship is typical of ¯eld quantization.
The underlying reason for it is that each quantum of a
`free' ¯eld adds the same amount (in the present case,
~!) to the total energy of the system; and the harmonic
oscillator, too, has a discrete spectrum with a constant
spacing between adjacent energy levels.

The foregoing is admittedly less than a thumbnail sketch
of ¯eld quantization, but it su±ces for our present pur-
poses. It is important to remember that the set of eigen-
states of the Hamiltonian of a single linear harmonic
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oscillator is equivalent to the set of photon number states
of radiation of a given wave vector and polarization:
the latter comprises multi-photon states of every non-
negative integer number n of photons. We shall exploit
this equivalence to visualize the evolution of states of
the radiation ¯eld in terms of the behaviour of quan-
tum mechanical wave packets (obtained by appropriate
superpositions of Fock states) in a harmonic oscillator
potential.

Recall that the action of the the lowering and raising
operators â and ây in the oscillator problem on the state
jni is given by

â jni =
p
n jn¡ 1i and ây jni =

p
(n+ 1) jn+ 1i;

(1)
respectively. In the case of the radiation ¯eld, â is the
photon annihilation operator while ây is the photon cre-
ation operator (for photons of a given frequency and
state of polarization). They satisfy the basic commu-
tation relation [â ; ây] = Î . The set fjnig forms an or-
thonormal basis in the Hilbert space. Fock states are
of course the eigenstates of the photon number opera-
tor, according to (ây â) jni = n jni, where n = 0; 1; : : : .
A crucial property is the annihilation of the vacuum or
zero-photon state by â, given by the relation â j0i = 0.

As we have mentioned already, the Fock states jni can
be superposed to form various interesting states of the
radiation ¯eld. The states we will consider here are
the families of standard coherent states, photon-added
coherent states, and squeezed states. These are not
merely mathematical constructs. Coherent states repre-
sent ideal single-mode laser light, and the one-photon-
added coherent state has been produced in the labora-
tory a few years ago. Squeezing of light has also been
demonstrated experimentally. It is expected that propa-
gating beams of squeezed light and multi-photon-added
coherent states will be achieved in practice in the near
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2.1 Coherent States

The coherent state (CS) is of basic importance in quan-
tum optics. Let ® be any complex number. Then the
normalized CS labelled by ® is given by

j®i = e¡
1
2
j®j2
³
j0i +

®
p

1!
j1i+

®2

p
2!
j2i+ : : :

´

= e¡
1
2
j®j2

1X

n=0

®n
p
n!
jni: (2)

The exponential factor outside the summation sign en-
sures that the state is normalized to unity, i.e., h®j®i =
1. Coherent states have a number of very remarkable
properties. The foremost of these is the fact that the CS
j®i is a normalized eigenstate of the photon annihilation
operator â. Using the ¯rst equation in (1), it is easy to
verify that âj®i = ®j®i, and hence h®jây = ®¤h®j, for
every complex number ®. The eigenvalue spectrum of
the nonhermitian operator â is thus a two-fold continu-
ous in¯nity, namely, complex numbers with all possible
real and imaginary parts. The set of states fj®ig forms
what is known as an over-complete set of states in the
Hilbert space. Di®erent coherent states are not orthog-
onal to each other. The mean number of photons in
a CS is of signi¯cance. This is easily seen to be given
by h®jây âj®i = j®j2. The mean energy of the state j®i
is thus ~!j®j2. The Fock state j0i, which is the zero-
photon state or the vacuum, is also a coherent state,
automatically.

The probability distribution of the number of photons
in a CS is also easily determined. By the basic rule of
quantum mechanics, the probability that the CS j®i has
r photons is found to be P (r) = jhrj®ij2 = e¡j®j

2
j®j2r=r!,

where r = 0; 1; 2; : : : . Hence P (r) is a Poisson distribu-
tion, with mean j®j2 (as we have found already). Since
the variance is equal to the mean for a Poisson distribu-
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bution, the variance of the photon number in the CS
j®i is also equal to j®j2. This is a characteristic signa-
ture of the coherent radiation from an ideal single-mode
laser. When j®j is su±ciently small, the probability P (r)
drops quite rapidly with increasing r. It is therefore pos-
sible to arrange matters in a laser experiment such that
no photons are produced most of the time, interspersed
with production of a single photon now and then. This
enables single photon experiments to be carried out.

2.2 Photon-Added Coherent States

The m-photon-added coherent state (PACS) j®;mi is
obtained by adding m photons to the CS j®i by the re-
peated application of the photon creation operator ây,
and then normalizing the resulting state to unity. Thus
j®;mi = Cm â

y m j®i, where Cm is a normalization con-
stant. (We shall not write down the exact expression
here.) The importance of the PACS arises from several
factors, among which are the following:

(a) The state j®;mi interpolates between the Fock state
jmi (to which it reduces when ® = 0) and the CS j®i
(to which it reduces when m = 0).

(b) The CS j®i enjoys a certain property of perfect co-
herence, from which the PACS j®;mi departs in a tun-
able manner as m is increased, keeping ® ¯xed. We do
not go into this any further, as we shall not be concerned
here with this aspect.

(c) The variance of the photon number in a PACS in-
creases with the mean photon number, but less rapidly
than linearly. This leads to a quanti¯able departure
from Poisson statistics. Again, this is a feature which
we do not consider any further here.

(d) The PACS displays speci¯c nonclassical features that
the CS does not. This is the aspect of interest to us here.

As we have stated earlier, the state corresponding to
m = 1 has been realized experimentally.



197RESONANCE  February 2012

GENERAL  ARTICLE

Recall that the mean photon number in the CS j®i is
j®j2, while it is m in the Fock state jmi. At ¯rst sight,
therefore, we might expect the mean photon number
in the PACS j®;mi to be j®j2 +m. The actual answer,
however, is a little more involved. It lies between j®j2+m
and j®j2 + 2m. For a given value of the non-negative
integer m, the mean photon number in the PACS starts
at m for j®j = 0, and tends to j®j2 + 2m for j®j À m.

The third kind of state we shall consider, namely, squee-
zed states, will be introduced further on.

3. The x̂ and p̂ Quadratures

In basic courses on QM, the problem of the linear har-
monic oscillator is solved in the position representation.
The stationary states jni are then represented by the
position-space wave functions Án(x) ´ hxjni. As is well
known, the normalized eigenfunction Án(x) is given by
the product of a Gaussian factor and the Hermite poly-
nomial of order n. For an oscillator of unit mass and
natural frequency !, this function is

Án(x) = (2nn!)¡1=2(!=¼~)1=4 e¡!x
2=(2~)Hn

¡
x
p
!=~

¢
:
(3)

The positional probability density in the ground state
j0i is the normalized Gaussian

jÁ0(x)j
2 = (!=¼~)1=2 e¡!x

2=~: (4)

Recall that j0i is a minimum uncertainty state, in which
the product of the standard deviations in x̂ and p̂ is
given by ¢x̂¢p̂ is exactly 1

2
~. For all the excited states,

¢x̂¢p̂ > 1
2

~.

The radiation problem we are considering, however, is
only formally equivalent to a quantum mechanical har-
monic oscillator. What signi¯cance do `position' and
`momentum' have in this case? They are just the her-
mitian operators from which the nonhermitian annihi-
lation and creation operators are constructed as linear

The mean photon

number in the CS

j®i is j®j2 , while

it is m in the Fock

state jmi.

The stationary states

jni of the linear

harmonic oscillator

are given by the

product of a Gaussian

factor and the Hermite

polynomial of order n.
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combinations { in the same way that a complex number
z = x + iy and its complex conjugate z¤ = x ¡ iy are
linear combinations of the two real numbers x and y.
Thus, we de¯ne the hermitian operators x̂ and p̂ as the
linear combinations

x̂ = (2~=!)1=2 (â+ ây)

2
and p̂ = (2~!)1=2

(â¡ ây)

2i
:

(5)
The inverse relations corresponding to (5) are

â = x̂ (!=2~)1=2 + ip̂ (2~!)¡1=2 and

ây = x̂ (!=2~)1=2 ¡ ip̂ (2~!)¡1=2 : (6)

The basic commutation relation [â ; ây] = Î then goes
over into the standard position-momentum commuta-
tion relation [x̂ ; p̂] = i~Î.

² The important point is that, although the nonhermi-
tian operators â and ây are not directly measurable, the
hermitian operators x̂ and p̂ are, in principle, measure-
able.

We have made them look exactly like the position and
momentum operators of a linear harmonic oscillator, but
there is no actual mechanical oscillator here. On the
other hand, they are observables, which can be deter-
mined by suitable measurements on the electromagnetic
¯elds associated with the radiation. They are called
quadratures in the quantum optics context. We shall
therefore speak of the x̂-quadrature and p̂-quadrature
from now on2. The Hamiltonian of the radiation ¯eld,
too, now looks like that of a harmonic oscillator of unit
mass, with the ground state energy subtracted out (so
that the zero-photon state has zero energy):

Ĥ = ~! ây â = 1
2
p̂2 + 1

2
!2x̂2 ¡ 1

2
~! Î: (7)

We can now represent the various states of the radiation
¯eld in terms of x-space wave functions, if we so desire.
We could also use the p-space wave functions, or any
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other representation, of course. But the wave functions
in x-space are more familiar ones, and su±ce for our
purposes.

² The time evolution of any initial, prepared, state jª(0)i
of the radiation ¯eld as it propagates in free space is
given by the time evolution of the corresponding ini-
tial wave function Ã(x; 0) as governed by the oscillator
Hamiltonian (7).

² That is, we need to study only the quantum mechani-
cal evolution of any initial wave function in the parabolic
potential 1

2
!2x2.

² Moreover, we can use Ehrenfest's theorem to study
the evolution of the expectation values of the x̂ and p̂
quadratures and their higher moments.

3.1 Wave Functions in x-Space

Having outlined the strategy, it remains to specify the
wave functions for the initial states of interest to us.
The n-photon Fock state jni, of course, has precisely
the x-space wave function Án(x) given by (3). What
about the CS j®i? Let us use the shorthand nota-
tion ®(x) to denote the corresponding wave function
Ã®(x) ´ hxj®i. We can compute it from the de¯nition
of the CS, given in (2), after inserting the known ex-
pression for hxjni = Án(x) in the sum over n. A formula
for the generating function of the Hermite polynomials
is needed to carry out the summation in the resulting
expression. But there is a simpler and more instructive
method. From the eigenvalue equation â j®i = ® j®i it
follows that

hxj(â¡ ®)j®i = 0: (8)

Now, as (6) shows, â is a linear combination of x̂ and
p̂. In the x-representation, as we learn in elementary
courses on QM, the action of x̂ merely corresponds to
multiplication by x, while the action of p̂ is that of the
derivative operator ¡i~d=dx. Therefore (8) becomes,
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when written out in the x-representation,
£
(~=2!)1=2d=dx+ (!=2~)1=2x¡ ®

¤
®(x) = 0: (9)

(Remember that the term ® inside the square brackets
is a complex constant, while ®(x) is the x-space wave
function corresponding to the state j®i.) This ordinary,
¯rst-order di®erential equation is easy to solve. There is
no additive constant of integration because a normaliz-
able wave function must vanish at x = §1. The solu-
tion is a Gaussian multiplied by an x-dependent phase
factor whose modulus is unity. Thus ®(x) is a Gaus-
sian modulated by an oscillatory factor. (We leave it to
the reader to ¯nd ®(x) explicitly.) The corresponding
probability density is a normalized Gaussian, given by

j®(x)j2 = (!=¼~)1=2 exp
£
¡ (!=~)

¡
x¡ ®1

p
2~=!

¢2 ¤
;

(10)
where ®1 is the real part of ®. We conclude that:

² Every member of the whole family of coherent states
has a Gaussian probability density, and is a minimum
uncertainty state, with ¢x̂¢p̂ = 1

2
~.

Compare (10) with (4) for the ground state of the oscil-
lator. The Gaussian in (10) is displaced, with its peak
at x = (2~=!)1=2 ®1 rather than x = 0. In the same
way, we can show that the p-space probability density
corresponding to the CS j®i is also a Gaussian, with its
maximum at p = (2~!)1=2 ®2 , where ®2 is the imagi-
nary part of ®.

² The real and imaginary parts of the complex parame-
ter ® therefore determine the extent to which the peaks
of the probability densities of the CS j®i in x-space and
p-space, respectively, are displaced with respect to that
of the zero-photon state j0i. This is why the CS j®i is
also called a displaced vacuum state.

The expectation values of x̂ and p̂ are obviously given
by the locations of the centres of the respective Gaus-
sian probability densities, namely, hx̂(0)i = (2~=!)1=2 ®1
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and hp̂(0)i = (2~!)1=2®2. We have indicated the time
argument in the expectation values, in anticipation of
the fact that these quantities will change with time, as
we shall see shortly in Section 4.

Next, we turn to the x-space wave function hxj®;mi
corresponding to the PACS j®;mi. This wave function
is not as simple as a Gaussian modulated by a phase
factor. Apart from a normalization factor, it is given by
a di®erential operator acting on ®(x), because

hxj®;mi / hxj(ây)mj®i

=
£
¡(~=2!)1=2d=dx+ (!=2~)1=2x

¤m
®(x): (11)

The result can be quite a complicated function, espe-
cially for large values of m. The corresponding proba-
bility density of hxj®;mi will no longer be unimodal, i.e.,
it will no longer have a single maximum. With increas-
ing m, the number of maxima and minima that it has
also increases. We will illustrate the speci¯c case m = 1
graphically in Section 4. This feature has interesting
consequences which show up in the expectation values
of x̂ and p̂ and in their higher moments, and also in
the dynamics of the state as it evolves, even in a simple
parabolic potential. These aspects help us understand
why the CS is referred to as a `classical' state, while the
PACS is not.

4. Dynamics and Ehrenfest's Theorem

We are ready, now, to consider the time evolution of
an initial coherent state of radiation as it propagates
in free space. That is, we look at the state jª(t)i =

e¡iĤt=~ jª(0)i where Ĥ = ~! ây â, for the initial state
jª(0)i = j®i. Entirely equivalently, as we have ex-
plained in Section 3, we could examine the evolution (ac-
cording to the SchrÄodinger equation) of the wave func-
tion of a particle of unit mass in the oscillator potential
1
2
!2 x2, given the initial wave function Ã(x; 0) = ®(x).

This latter procedure is the one we shall adopt.
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Note that, for any time-independent Hamiltonian, we
have the general result hª(t)jĤjª(t)i = hª(0)jĤjª(0)i,
since Ĥ commutes with itself. This is true no matter
what the initial state is. Therefore, even though j®i
is not an eigenstate of Ĥ = ~! ây â, the mean photon
number and the average energy remain equal to j®j2

and ~! j®j2, respectively, at all times. The expectation
value of the Hamiltonian of the equivalent particle is
therefore E = ~! j®j2, and this remains constant under
time evolution.

Now consider what a classical particle with a given to-
tal energy E would do when placed in the parabolic
potential 1

2
!2 x2. It would oscillate between the classi-

cal turning points x = §
p

2E=!, where the potential
energy becomes equal to E. The particle cannot move
beyond these turning points. Quantum mechanically,
however, a particle with some given expectation value
hĤi = E has, in general, a wave that extends over the
full range ¡1 < x <1. For instance, each of the Fock
state eigenfunctions Án(x) = hxjni in (3) extends over
the full range in x. So does the wave function ®(x) of
the CS j®i.

How do these wave functions change with time? In the
stationary state jni, of course, the initial wave function
Án(x) merely acquires a multiplicative phase factor and
becomes e¡iEnt=~ Án(x) = e¡in!t Án(x) at any time t. All
expectation values in this state remain unchanged in
time. In particular, hx̂i and hp̂i remain equal to zero for
all t in each Fock state. But something quite remarkable
happens to an initial CS j®i. We have

j®i ! e¡iĤt=~j®i = e¡
1
2
j®j2

1X

n=0

®n e¡ni!t
p
n!

jni

= j® e¡i!ti: (12)
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In other words:

² An initial coherent state remains a coherent state at
all times.

² The complex parameter labelling the state retains its
magnitude, while its real and imaginary parts oscillate
sinusoidally with a frequency !.

The wave functions in x-space and p-space remain Gaus-
sians, modulated by pure phase factors. The probabil-
ity density retains its Gaussian form both in x and in
p. But the centre of each Gaussian, which is also the
expectation value of the corresponding quadrature, now
oscillates in time with a frequency !, according to

hx̂(t)i = (2~=!)1=2 (®1 cos !t+ ®2 sin !t);

hp̂(t)i = (2~!)1=2 (®2 cos !t¡ ®1 sin !t):

)

(13)

In other words, these expectation values behave exactly
like the position and momentum of a classical linear har-
monic oscillator. The correspondence is even more ex-
act: The amplitude of oscillation in x-space is easily seen
to be (2~=!)1=2 j®j. But since the mean energy in the
state is E = ~! j®j2, this is precisely the position of the
classical turning point

p
2E=!.

² The quantum mechanical expectation values hx̂(t)i
and hp̂(t)i in the CS j®i behave exactly like the classical
position and momentum of a linear harmonic oscillator.

² The state remains a minimum uncertainty state at all
times.

These features support the use of the term `classical'
state of radiation to describe the coherent state j®i.

Figures 1a-c depict these conclusions graphically. (For
illustrative purposes, we have set ~ = 1 and used the
values ! = 0:005 and ® = 1 in all the ¯gures in this
article.) The parabola in black shows the oscillator po-
tential, and the violet bell-shaped Gaussian depicts the
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Figure 1. Periodic motion of

the positional probability den-

sity (violet curve) and hx̂(t)i

(blue dot) for a coherent state.

(a) t = 0; (b) t =  (2);(c) t =

 . The parabolic curve in

black is the oscillator poten-

tial. The horizontal red dotted

line indicates the mean en-

ergy of the state. The prob-

ability density profile does not

change shape during the time

evolution, but merely trans-

lates back and forth.

probability density corresponding to the CS at the in-
stants (a) t = 0; (b)¼=2!, and (c)¼=!, respectively.
(This covers one half of a complete oscillation.) The
horizontal red dotted line corresponds to the value of
the mean energy E in the CS, and it intersects the po-
tential at the two classical turning points. The blue dot
on this line represents the expectation value hx̂(t)i. Its
location on this line illustrates how it oscillates back and
forth like a classical oscillator would. As we have shown
above, the maximum and minimum values of hx̂(t)i coin-
cide with the classical turning points. This is indicated
more clearly in the insets in Figures 1a and c.

The dynamics of the higher powers of x̂; p̂ and their
combinations can be established similarly, with the help
of the Ehrenfest theorem.

Let us now turn to the case when the initial state is a
PACS. As we have seen in Section 3, the probability den-
sity (either in x-space or in p-space) is not a Gaussian for
a PACS. The state is not a minimum uncertainty state
at any time. Moreover, this density does not retain its
shape as it evolves under the in°uence of the oscillator
potential. In Figures 2a{c, we show what happens in the
case of an initial one-photon-added coherent state j®; 1i.
The colour coding is exactly the same as in Figure 1, as
are the numerical values of the constants. The dotted
red line again corresponds to the mean energy in the
PACS, E = ~! hây âi. (But remember that hây âi is no

2
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Figure 2. Periodic motion of

the positional probability den-

sity (violet curve) and

hx̂(t)i(blue dot) for a 1-pho-

ton-added coherent state. (a)

t = 0; (b) t = /(2); (c) t = /.

The horizontal red dotted line

indicates the mean energy E

of the state. Note that (i) the

probability density profile has

two maxima, (ii) it changes

shape during the time evolu-

tion, and (iii)hx̂(t)idoes not

reach the classical turning

points at any time.

longer equal to j®j2, its value in the case of a CS.) We see
that the probability density in x-space has two maxima
rather than just one. Moreover, the curve changes shape
in a rather drastic (but regular) fashion as it oscillates
back and forth.

The expectation values hx̂(t)i and hp̂(t)i continue to vary
sinusoidally, as in simple harmonic motion. This feature
is guaranteed by the Ehrenfest theorem, and is implicit
in equation (9) appearing in Part 1 of this two-part ar-
ticle, namely, dhx̂i=dt = hp̂i and dhp̂i=dt = ¡!2 hx̂i.
These equations remain valid for all states and all times,
since the Hamiltonian is quadratic in x̂ and p̂. There is,
however, an important di®erence between the present
case and that of a CS: the amplitude of oscillation falls
short of the classical turning point

p
2E=! correspond-

ing to the total energy E. This is shown more clearly
in the insets in Figures 2a and c. This feature, and
the fact that the state is never a minimum uncertainty
state, enable us to say that we are now dealing with a
nonclassical state of radiation.

There is a simple way of understanding why the am-
plitude of oscillation of hx̂(t)i falls below the classical
turning point. Recall that hx̂(t)i remains equal to zero
for the Fock state jmi, while it periodically reaches the
classical turning point for the coherent state j®i. The
PACS j®;mi interpolates between the Fock state and
the CS. It is therefore plausible that the amplitude of
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The values of ¢x̂

and ¢p̂ in any CS

j®i are precisely

those in the vacuum

state. (Hence a CS is

a minimum uncertainty

state, but not a

squeezed state.)

Box 1. Squeezed States

The commutation relation [x̂ ; p̂] = i~ Î for the conjugate quadratures x̂ and p̂ pertaining
to a quantum mechanical system implies that the product of their uncertainties (i.e., their
standard deviations) satis¯es the Heisenberg Uncertainty Principle ¢x̂¢p̂ ¸ 1

2~ in any
state of the system. It follows from this uncertainty relation that x̂ and p̂ cannot both be
speci¯ed simultaneously to arbitrary accuracy in any state of the system. In particular,
if one of them is known exactly, the other cannot be ¯xed at all. This is an inherent
feature of quantum physics: for such a relation between standard deviations does not
exist in classical physics, where the simultaneous speci¯cation of conjugate observables
to arbitrary accuracy is possible if the measuring device has su±ciently high resolution.

The coherent state j®i is a minimum uncertainty state because ¢x̂¢p̂ is equal to its
least possible value, 1

2~, in that state. In this sense it is the nearest we can get to
a classical state. The individual uncertainties ¢x̂ and ¢p̂ in the CS j®i are given by
¢x̂ =

p
~=(2!) and ¢p̂ =

p
~!=2, respectively. Note that these values are independent

of the parameter ®. They are therefore equally valid for the vacuum state j0i, which
corresponds, of course, to ® = 0.

A squeezed state is one in which either ¢x̂ or ¢p̂ drops below its value in a CS (or in
the vacuum state). The uncertainty in the other conjugate observable will, of course, be
greater than that in a CS, because of the uncertainty principle. Squeezed light can be
produced with speci¯c superpositions of the photon number states. The squeezed vacuum
state is obtained by applying the operator exp (¯ ây2 ¡ ¯¤ â2), where ¯ is any complex
number, to j0i. The squeezed state we consider in the text is given by the superposition
1
2

¡p
3 j0i+ j1i

¢
. This state is squeezed in the x̂-quadrature. While it is not very feasible

to achieve this state of radiation experimentally, it is easy to calculate various quantities
explicitly in it. This is why we have chosen it for illustrative purposes.

the CS. It is therefore plausible that the amplitude of
oscillation of hx̂(t)i for the PACS lies in between 0 andp

2E=!.

Finally, let us consider another class of states of the
radiation ¯eld that are also nonclassical: squeezed states.
As explained in Box 1, a state of light is said to be
squeezed in the x̂-quadrature if the uncertainty ¢x̂ in
that state falls below

p
~=(2!) , which is its value in the

vacuum or zero-photon state. Similarly, it is squeezed
in the p̂-quadrature if ¢p̂ <

p
~!=2 , its value in the

vacuum state. The values of ¢x̂ and ¢p̂ in any CS j®i
are precisely those in the vacuum state. (Hence a CS is
a minimum uncertainty state, but not a squeezed state.)
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The uncertainty

product ¢x̂(t)¢p̂(t)

of the squeezed state

remains always

above the minimum

uncertainty value

¢ ¢ ¢

1
2
~ .

Now consider, at t = 0, the normalized state given by
the following superposition of the zero-photon and one-
photon Fock states:

jÂ(0)i = 1
2

¡p
3 j0i+ j1i

¢
: (14)

The mean energy in the state is E = 1
4

~!. We know
that j0i is a minimum uncertainty state, with ¢x̂ =p

~=(2!), while in the state j1iwe have ¢x̂ =
p

3~=(2!).
When superposed as in (14), however, the resultant state
gets squeezed in the x̂-quadrature! It is easy to show
that, in the state jÂ(0)i,

¢x̂(0) =
p

3~=(8!) and ¢p̂(0) =
p

3~!
±
2: (15)

Since 3
8
< 1

2
, the state is squeezed in the x̂-quadrature.

Now let the state evolve under the Hamiltonian Ĥ =
~! ây â, corresponding to the propagation of the radia-
tion in free space. It follows readily that

jÂ(t)i = 1
2

¡p
3 j0i + e¡i!t j1i

¢
: (16)

A short calculation gives the expressions

¢x̂(t) = [(3~=8!)(2¡ cos2 !t)]1=2 and

¢p̂(t) = [(3~!=8)(2¡ sin2 !t)]1=2: (17)

The x̂-quadrature is squeezed whenever cos2 !t > 2
3
. In

particular, it is squeezed at t = 0 and t = ¼=!, i.e.,
at the end-points of the oscillation of hx̂(t)i. The p̂-
quadrature is squeezed whenever sin2 !t > 2

3
. In partic-

ular, it is squeezed at t = ¼=(2!) and 3¼=(2!), i.e., at
the mid-point of the oscillation. The uncertainty prod-
uct ¢x̂(t) ¢p̂(t) itself remains always above the min-
imum uncertainty value 1

2
~, varying periodically from

a minimum value of 3
p

8~=16 to a maximum value of
9~=16, with a time period ¼=!. The x-space probability
density works out to

jhxjÂ(t)ij2 = (!=¼~)1=2 e¡!x
2=~ £

£
3
4

+ (3!=2~)1=2 x cos ! + !x2=(2~)
¤
: (18)
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Figure 3. Periodic motion of

the positional probability den-

sity (violet curve) and hx̂(t)i

(blue dot) for a squee-zed

state. (a) t = 0; (b) t =/(2);

(c) t = /. Note that the

probability density profile is

unimodal,but changes shape

during the time evolution. As

in the case of the PACS,

hx̂(t)idoes points at any time.

The expectation value hx̂i is identically equal to zero in
any Fock state jni. However, when j0i and j1i are su-
perposed as in jÂ(0)i and allowed to evolve in time, the
time-dependent coe±cient in jÂ(t)i shows the powerful
nature of quantum mechanical superposition! hx̂(t)i un-
dergoes simple harmonic motion, according to hx̂(t)i =
(3~=8!)1=2 cos !t. Figures 3a{c show, as in the ear-
lier cases, the periodic motion of the expectation value
hx̂(t)i in the oscillator potential. Once again, the prob-
ability density in x-space changes its shape periodically,
although it remains unimodal at all times. As in the case
of the PACS, hx̂(t)i does not reach the classical turning
points (located at §

p
~=(2!) in this case). This is, of-

course, the behaviour we would expect of a nonclassical
state of radiation.

Our treatment of a few aspects of some nonclassical
states of light has been essentially pedagogical. It must
be mentioned that there are more stringent quantitative
measures of the nonclassicality of quantum mechanical
states in general. Even among states of radiation, there
are many other interesting nonclassical states: for in-
stance, the so-called `cat' states such as the even and
odd coherent states j®i § j¡ ®i and the Yurke{Stoler
state j®i + i j¡ ®i; the squeezed vacuum state; and so
on. In all these cases, the Ehrenfest theorem provides
a convenient way to analyse the dynamics, and to un-
derstand (via the behaviour of the higher moments of
the quadratures concerned) the role played by quantum
°uctuations.
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We have restricted ourselves to the simplest case of prop-
agation of radiation in free space. As we have seen, this
corresponds to e®ective motion in a quadratic or har-
monic oscillator potential in the quadrature x̂. In con-
trast, propagation in nonlinear media is of great interest
in quantum optics. In Box 2, we have commented brie°y
on a case of considerable practical importance, the Kerr
medium. The equivalent problem in terms of x̂ and p̂
now involves nonquadratic Hamiltonians. As explained
in Part 1, Ehrenfest's theorem continues to provide, un-
der suitable conditions, a good approximation to the
dynamics in such cases as well.

Box 2. Wave Packet Revivals in Nonlinear Media

The term Kerr medium is used for a speci¯c kind of nonlinear optical medium that
displays an intensity-dependent refractive index and several interesting associated phe-
nomena. Certain dyes and semiconductor materials are good Kerr-like media. In the text,
we have seen how propagation of radiation in a vacuum is equivalent to time evolution
governed by the quadratic Hamiltonian ~! ây â. Propagation through a Kerr medium
is modelled by adding to this a quartic term proportional to ây2 â2. In terms of the
hermitian operators x̂ and p̂, this will immediately imply a Hamiltonian that is higher
than quadratic order in those quadratures. It follows from the commutation relation
[â ; ây] = Î, however, that ây2 â2 = (ây â)2 ¡ ây â. The Kerr Hamiltonian is therefore
completely expressible as a function of the photon number operator. Hence its eigen-
states are again those of ây â. In particular, their x-space wave functions continue to be
given by Án(x) as in 3. This fact is of help in calculations.

We have also seen how a coherent state is related to a Gaussian wave form. When prop-
agating through a Kerr medium, light in a CS will almost immediately lose its Gaussian
property and spread out into di®erent wave forms. Remarkably enough, however, the
wave packet could regain its Gaussian shape periodically, at speci¯c instants of time.
The explanation of this revival phenomenon lies in the quantum interference between the
basis states jni comprising the state of the radiation ¯eld. Further, at speci¯c instants
between two succesive revivals, the wave packet could reconstitute itself into two, three,
. . . Gaussian wave packets of smaller amplitude. These are referred to as fractional
revivals of the original state. The occurence of revivals and fractional revivals depends
crucially on the higher-order term ây2 â2 in the e®ective Hamiltonian of the system. A
large class of quantum states of radiation, including the PACS and certain squeezed
states, could display revivals and fractional revivals when propagating through a Kerr
medium. (See Box 3.)
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Figure A.

Figure B.

Box 3.

The Wigner function is an important measure of the extent of non-classicality of a quan-
tum mechanical state. It is not a probability distribution in the conventional, classical
sense of the term, as it need not be strictly non-negative for all values of its argument.
The three-dimensional ¯gure (Figure A) shows the Wigner function for an even coherent
state, plotted against the real and imaginary parts of its complex argument. The basal
plane is the zero level, while positive (respectively, negative) values lie above (respec-
tively, below) it. In contrast, the Wigner function for a pure coherent state does not dip
below the zero level, a±rming its `classicality'.

When an initial even coherent state propagates through a nonlinear optical medium
such as a Kerr medium (modelled by the Hamiltonian mentioned in Box 2), it undergoes
periodical revivals. The set of ¯gures (Figure B) shows the projection onto the basal plane
of the Wigner function for such an initial state through a full revival period, captured
at speci¯c fractions of this period. The colour coding alongside indicates the extent to
which the function rises above (or falls below) the zero level.
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The Ehrenfest

theorem stands out

as the most important

link between the

familiar classical

world and the

unfamiliar terrain of

the quantum world.

A student exposed for the ¯rst time to quantum physics
is faced with a collection of radical ideas such as the
uncertainty principle, the inherently probabilistic na-
ture of quantum physics, light as quanta of energy, tun-
nelling of particles through potential barriers, quantum
mechanical superposition of states, quantum states with
no classical analogues, and so on. All of these seem to
defy `physical intuition' as we know it in the macro-
scopic `world of middle dimensions' which we perceive
directly and experience. In this situation, the Ehrenfest
theorem stands out as the most important link between
the familiar classical world and the unfamiliar terrain
of the quantum world. The physicist responsible for es-
tablishing this connection was also an expositor of the
highest clarity and a teacher of remarkable excellence.
As the Wikipedia article on Paul Ehrenfest says, quot-
ing the words of Albert Einstein himself: \He was not
merely the best teacher in our profession whom I have
ever known; he was also passionately preoccupied with
the development and destiny of men, especially his stu-
dents ¢ ¢ ¢ to encourage youthful talent { all this was his
real element ¢ ¢ ¢ ."




