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Congruent Numbers, Elliptic Curves, and the
Passage from the L ocal to the Global

Chandan Singh Dalawat

The ancient unsolved problem of congruent num-
bers has been reduced to one of the major ques-
tions of contemporary arithmetic: the finiteness
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This problem of characterising “congruent numbers” —
areas of rational right triangles — is perhaps the oldest
unsolved problem in all of Mathematics. It dates back
to more than a thousand years and has been variously
attributed to the Arabs, the Chinese, and the Indians.

Three excellent accounts of the problem are available
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detailed account is to be found in Introduction to elliptic curves and modular
forms (Springer, 1984) by Neal Koblitz. None of these sources goes beyond the
theorems of John Coates and Andrew Wiles [1] (see Theorem 14) and of Jerrold
Tunnell 2] (see Theorem 25).

In 1991, Rubin [3] (see Theorem 15) reduced the congruent number problem to
a natural finiteness question in the arithmetic of elliptic curves (with “complex
multiplications”). An excellent survey of such finiteness questions can be found
in Barry Mazur’s article [4].

This article consist of three parts of quite different nature. The first part is
an elementary presentation of the problem of congruent numbers (§1) and its
conjectural solution (§2); the material here is borrowed from the accounts which
have been cited. The second part introduces local number fields (§3) and discusses
the local-to-global principle — its validity in the case of conics (§4) and its failure
in the case of cubics (§5) — in a language which can be understood by bright
undergraduates. The last part, which requires greater mathematical maturity, is
a catalogue of results — some old, some new — and conjectures in the arithmetic
theory of elliptic curves in general (§6) and those without complex multiplications

in particular (§7); it ends with a word about the role played by modular forms
(§8).

1. Congruent Numbers

If a rational number « is the area of a right triangle with rational sides, then so is
af? for every rational 3 € Q*. Indeed, if « is the area of a rational right triangle
with sides a, b, ¢, then af? is the area of the rational right triangle with sides
alB|, b8, ¢|B]. So, up to replacing o by a3? for a suitable 3, we may assume that
a is an integer, and moreover that « is not divisible by the square of any prime
number. In other words, we assume that « is a positive squarefree integer.

Definition 1. A squarefree integer o > 0 is said to be a congruent number if
there exist a,b,c € Q such that a®> + b> = ¢ and ab = 2.

The terminology is classical and comes from the fact that a is congruent if and
only if it is the common difference (congruum, in Latin) of a three-term arithmetic
progression of rational squares. For if a is the area of a rational right triangle
with sides a < b < ¢, then, putting d = (c/2)?, the arithmetic progression d — a,
d, d + a consists of rational squares. Conversely, if there is a rational number d
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such that d — a, d, d + « are all three squares, then « is the area of the rational
right triangle with sides vd + a — vVd — «, Vd + o + vVd — a and 2V4d.

The problem we address is that of deciding which numbers are congruent: we are
asking for an easily-checked criterion which would tell us whether a given number
is congruent or not.

Let us first study the single equation a® + b* = ¢? in strictly positive rational
numbers; such a triple (a,b,c) wil be called a rational solution for short. Two

rational solutions (a, b, c), (a’,V', ") of this equation are called equivalent if a =

Aad',b=Ab, c= A\ for some A € Q* (necessarily positive). A rational solution
is called primitive if a,b, ¢ € Z, and if they have no common prime divisor. Every
rational solution is equivalent to a primitive one, and no two primitive solutions
are equivalent.

Reducing a primitive solution modulo 4, we see that precisely one of a,b is even.

Proposition 2. Let (a,b,c) be a primitive solution of a* + b* = ¢2, with a = 2t
even (and b,c odd). Then there exist integers m > n > 0, ged(m,n) = 1,
m # n (mod. 2), such that

a=2mn, b=m?—n% c¢=m?+n% (1)
Conversely, every such pair m, n of integers (m > n > 0, mutually prime, not of

the same parity) gives rise via (1) to a primitive triangle a,b, c with a even (and
b,c odd).

Proof : As b is odd, so is ¢. Hence ¢+ b and ¢ — b are even; write ¢ + b = 2u and
c¢—b=2v. If a number divides both u and v, it would divide their sum u+v = ¢

and their difference u — v = b. But ged(b, ¢) = 1, so we have ged(u,v) = 1. The
relation a? + b? = ¢? implies that t?> = uv, which shows that each of u,v must be
a square. Let m > n > 0 be such that u = m?, v = n? clearly, ged(m,n) = 1.

Also, m # n (mod. 2) because b = m? — n? is odd.

Conversely, we have to show that the triangle a, b, ¢ obtained from such a pair
m, n is primitive. Now, 2 divides neither b nor ¢ ; if a prime p # 2 divides both
b and c¢, it would divide ¢ 4+ b and ¢ — b, hence u and v, and hence m and n.

Let C be a projective conic with a rational point O, for example the one defined
by a? + b? = ¢2, with O = (1: 0 : 1). Denoting by D the projective line of lines
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through O, the morphism f which sends a point P € C to the line f(P) € D
passing through O and P — the tangent to C' at O if P = O — is an isomorphism.

This result allows us to generate a list which will eventually contain any given
congruent number: it suffices to go through the list of all such pairs (m,n),

compute the area mn(m? — n?) of the triangle (1), and take the ‘squarefree part’.
Thus the pair (2, 1) shows that the number 6 = 2.1.(2% — 1?) is congruent.

Retaining only the squarefree parts of the numbers produced by this procedure,
the first few congruent numbers which show up are

5,6,7,13,14,15,21, 22,23, 29, 30, 31, 34, 37,38, 39, 41, . .. (2)

Note that we have not proved that the numbers 1, 2, 3 are not congruent; it may
simply be that they haven’t yet shown up on the list ! Indeed, Leonardo of Pisa
(called Fibonacci) (1175-1240) was challenged to find a rational right triangle of
area 5 (he succeeded) and he conjectured that 1 is not congruent; this was settled
much later by Pierre Fermat (1601-1665).

How can we determine if a specific number such as 157 is congruent? The naive
approach, suggested by the discussion just after Definition 1, would be to go
through a ‘list’ of squares d of rational numbers and to see if both d — 157 and
d + 157 are squares. There is indeed such a ‘list’: first we go through the squares
of the finitely many rational numbers whose numerator and denominator have
just one digit, then through the squares of those — again finitely many — whose
numerator and denominator have at most two digits, and so on. It turns out that
the first square which works for 157, according to Don Zagier, is

B < 22440351770433696992455751309067486316094847204 1 >2
— \2 x 8912332268928859588025535178967163570016480830

Clearly, this number could not have been found by the naive approach; some
theory is needed. Also, as before, this approach cannot prove that the given
number, for example 1, is not congruent.

Theorem 3 (P Fermat ~ 1640). The number 1 is not congruent.

Proof: We have to show that there is no rational right triangle whose area is a
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square. If there is such a triangle, we may assume, as before, that its sides are
integers not all divisible divisible by any prime number. Fermat’s idea of infinite
descent consists in showing that if there were such a ‘primitive’ triangle whose
area is a square, then there would be a smaller primitive triangle whose area is
also a square. Clearly, this cannot go on for ever.

Let (a,b, c) be a primitive triangle whose area is a square. Assume that a is even
(and b, c odd). Write a = 2mn, b = m? — n? ¢ = m? + n?, with m > n > 0,
ged(m,n) = 1and m # n (mod. 2) (Proposition 2). As the area mn(m+n)(m—n)
is a square, and as no two of the four factors have a common prime divisor, all

2 n=v% m+4+n=u? m—n=0v% Bothu, vare

2

four must be squares: m =z
odd because m +n, m —n are odd, and ged(u,v) = 1. We also have u? —v? = 2y,
which we rewrite as

2y° = (u+v)(u—v). (3)

As w,v are odd and ged(u,v) = 1, we have ged(u + v,u — v) = 2. So one of
the two factors on the right in (3) must be of the form 2r? and the other of the
form 4s2. In any case, the sum of their squares is 16s* + 4r*. At the same time,
(u+v)?+ (u—v)* = 2(u* +v?) = 4m = 42?. Comparing these two results, we get
4s* +7r1 = 2%, which means that (252,72 ) is also an integral right triangle whose
area (rs)? is a square. This triangle is smaller than our original triangle (a, b, c)
because z* = m? < m? + n? = ¢; it may not be primitive, but the corresponding
primitive triangle is even smaller.

The passage from the triple (a,b,c) to the triple (252,72, z) can be construed as

3

division by +2 on the elliptic curve C; : y? = 23 — 2; cf. the discussion before

Exercise 7, and the beginning of § 6. The idea of the size of a triple leads to the
notion of the height of a rational point on an elliptic curve.

Corollary 4. The equation z*—y* = 2% has no solutions in integers with xyz # 0.

Proof: If there were a solution, the integral triangle (22%y?, 2% —y*, 2% + y*) would
have square area (zyz)>.
Corollary 5. The equation z*+y* = 2* has no solutions in integers with xyz # 0.

Proof: If there were a solution, we would have z* — y* = (22)2.
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The system of equations (a? + b* = ¢?; ab = 2a) whose solvability in rational
numbers characterises a as a congruent numbers can be changed into a single,
more familiar, equation.

Proposition 6. The integer o is congruent if and only if the equation
Ca:ay2:x3—x (4)
has a solution x,y € Q with y # 0.

Proof: If (z,y) is such a solution, then the area of the rational right triangle
(2]x], |#% — 1],]2% + 1|) is a, up to a rational square (y*). Conversely, let (a, b, c)
be a rational right triangle and write

a=X2mn, b=X\(m?*—n?, c=X\(m*+n?

for some A € Q* and integers m,n as in Proposition 2. If the area of this triangle
is a, we have a = A2.mn(m?—n?), which means that (4) has the solution = m /n
and y = 1/An.

From a given rational point P = (z,y) (y # 0) on C,, (4) we can generate infinitely
many others : the tangent to C, at the point P meets C, at another rational
point Py = (1,y1), and this process can be continued. It is not obvious, but it
can be shown that this process does not terminate, essentially because it leads to
points whose coordinates have more and more digits (cf. the discussion of torsion

points on C, before Theorem 18).

) (22 +1)* 2% —b52t — 522+ 1
Exercise 7. (x1, = , — .
(21,1) <4x(x2 -1) 8ady3
This has an amusing consequence which is not at all obvious at the outset, and
which goes back to Fermat:

Corollary 8. If (a squarefree positive integer) o is congruent, then it is the area
of infinitely many rational right triangles.

Corollary 9. A squarefree positive integer « is congruent if and only if the

3

equation ay? = x° — x has infinitely many solutions x,y € Q.

Here are the first few rational squares d such that both d — 6 and d + 6 are also
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squares:

( 5 >2 (1201 >2 ( 7776485 )2 ( 2094350404801 )2
2x 1) '\2x70/) "\2x 1319901/ "\ 2 x 241717895860

The morphism y — +/ay shows that the curves C; and C, become isomorphic

over Q(y/a); this is expressed by saying that C,, is a ‘quadratic twist’ of Cy. The
problem of congruent numbers thus consists in characterising the quadratic twists
of the fixed elliptic curve C; which have infinitely many rational points.

2. The Conjectural Solution

After these elementary observations, let us give the conjectural answer to the
problem of characterising congruent numbers.

Recursively define the polynomial g,(T) = g,_1(T)(1 — T%)(1 — T1"), starting
with g(T) = T(1 — T®)(1 — T'%). Notice that g,(T) — g,_1(T) is of degree > 8r,
which means that the polynomials g, and g¢,_; have the same terms till degree
8r. This implies that as r — 400, the g, tend to a formal series g € Z[[T]].

Notation 10. For j = 1,2 and integer n > 0, define cj(n) as being the coefficient
of T™ in the formal series ¢(T)8;(T), where

+o00 oo
g(T) =T H(l_TSTL)(l _T16n) and (%(T) _ 1—|—22T2jn2.
n=1 n=1

Notice that the numbers ¢;(n) are quite easy to compute. Here are the first few,
for n odd and squarefree.

Table 11.

n 1 3 5 7 11 13 15 17 19 21 23
cqn) 1.2 0 0 -2 0 0 -4 -2 0 O
() 1020 0 -2 0 0 0 —4 0

Exercise 12. Let n be an odd squarefree integer. If n = 5,7 (mod.8), then
c1(n) =0. If n =3 (mod.4), then co(n) = 0.
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For the remainder of this section, let o be a squarefree integer > 0, and write
a=jn, with j = 1,2 and n odd.

Conjecture 13. The number o = jn is congruent if and only if c¢j(n) = 0.

As we shall see, this conjecture is implied by Conjecture 24 (Birch and Swinnerton-
Dyer), combined with Theorem 25 (Tunnell).

The reader should marvel at how unexpected the (conjectural) characterisation
is, how far-removed from rational right triangles and their areas!

The physicist Richard Feynman claims in his Surely you are joking that he could
guess whether a mathematical statement explained to him in elementary terms
was true or false. It would have been interesting to have given him Definition 1
and Notation 10, and to have asked him if Conjecture 13 is true.

We do know one of the implications in Conjecture 13:

Theorem 14 (J Coates and A Wiles [1]). If ¢;(n) # 0, then a = jn is not
congruent.

It follows for example that the numbers 1,2, 3,10, 17, 19,26 and 42 (Table 11) are
not congruent (cf. Theorem 3).

If the squarefree odd integer n is = 3 (mod.4) (resp. = 5,7 (mod.8)), then 2n
(resp. n) should be congruent (Exercise 12, Conjecture 13), and the first few such
n are indeed so (cf. (2)). In a paper which became influencial only when it was
properly understood years after its publication, K Heegner proved that this is
true if n is prime [5].

However, in general, the result is only conditional. It is conditional on the finite-
ness of a certain set S,, which will be discussed in detail in later parts of this
article (cf. Conjecture 16). Suffice it to say here that the finiteness of the set

S, is equivalent to the finiteness of the group HI(E,) which is more familiar to
arithmeticians. We have chosen to formulate things in terms of the closely related
set S, because it can be defined in elementary terms.

Theorem 15 (K Rubin [3]). If ¢;j(n) = 0 and if the set S, is finite, then the
number a = jn is congruent.

Note that if ¢j(n) = 0 and if S, is finite, then Theorem 15 shows that a is
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congruent without exhibiting a rational right triangle of area a. However, in
some cases (‘rank 1), the set S, is known to be finite and there is a method
(‘Heegner points’) for constructing such a triangle. Zagier's example showing
that 157 is congruent, displayed before Theorem 3, is of this type. A method
for explicitly constructing solutions in the ‘higher rank’ case would be a major
advance.

3. Local Number Fields

We have seen (Theorem 15) that the problem of deciding whether a given (square-
free) integer a > 0 is congruent or not comes down to deciding if the set S, —
which we have mentioned but not yet defined — is finite or not. In order to define
it, we first need to introduce K Hensel’s local number fields.

The group Q*, modulo its torsion subgroup {1, —1}, admits the set of prime
numbers as a Z-basis. For every prime number p, there is thus a unique ho-
momorphism v, : Q¥ — Z such that v,(p) = 1 and v,(l) = 0 for every prime
number [ # p; this defines a discrete valuation because, extending it to a map on
the whole of Q by posing v,(0) = 400, we have

vp(x +y) > inf(vy(z), vp(y)) for all z,y € Q.

o)

Define | |, : Q — R by |z], = p~*@) (convention: p~>° = 0). Then |z — y|, is a
metric on Q with respect to which it can be completed to obtain a field Q, much
in the same way as we obtain the field R from Q by completing it with respect
to the usual metric |z — y|oo = sup(z — y,y — ). For this reason, the field of real

numbers is sometimes denoted Q.

It can be shown that the v, (p prime) are the only discrete valuations, and | |
the only archimedean absolute value, on the field Q (A Ostrowski, 1918). Thus
the absolute values | |, (p prime or p = 00) determine all the places of Q.

The fields Q, (including p = oo) play a fundamental role in arithmetic. It is
always a good idea to first study ‘global questions’ — questions about rational
numbers — everywhere ‘locally’ in the fields Q,, before trying to answer the orig-
inal question. It is a good idea because questions become simpler over local
number fields and can often be further reduced to questions over finite fields.
Sometimes it suffices to consider just one local field, sometimes finitely many,
sometimes all of them. In most cases, the local study is easy at almost all places.
We discuss a basic example in the next section.
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For p prime, the (locally compact) field Q, comes equipped with a continuous
discrete valuation extending v,; elements of positive valuation form a (compact)
subring Z, (‘the ring of integers’) in which pZ, is the unique maximal ideal; it
consists of elements whose valuation is strictly positive. The quotient Z,/pZ,
(‘the residue field’) is the same as the finite field F, = Z /pZ of p elements.

All books on Number Theory (Artin, Hasse, Weil, Serre, Kato-Kurokawa—Saito,
...) provide an introduction to the fields Q, and their extensions.

4. The Local-to-Global Principle for Conics

To avoid speaking of curves, we use the equivalent language of a function field
F over a field k: a finitely generated extension of k£ in which % is algebraically
closed; we’ll be mostly concerned with the case when F' has transcendence degree 1
over k. Concretely, if f € k[z,y| is an absolutely irreducible polynomial — one
which remains irreducible over every finite extension of & —, then the field of
fractions F' of the (integral) ring k[z,y|/fk[z,y] is a function field over k; we

write F' = k(z,y), with the relation f = 0. For every extension L of k, we then
get a function field over L by ‘extending the scalars’ of F' from k to L: the field
of fractions of L[z, y|/fL[z,y].

Let us fix an algebraic closure Q of Q. Clearly, the function field Q(x) becomes

isomorphic to Q(z) over Q. Are there any other function fields over Q which do?
And, is there a way to classify them all?

Fix an algebraic closure Q, of Q,. The corresponding local question is: find all
function fields over Q, which become isomorphic over Q, to Q,(z). Such function
fields will be called solutions to our problem.

The trivial solution to the problem is the rational function field Q,(x). It can
be shown that there is precisely one other solution; let us call it F,,. Thus the
function field F), is not the rational function field but becomes (isomorphic to)
the rational function field over Q,. For example, when p = oo, the field F, is
Qoo (2, y) with the relation 2?2+ 4%+ 1= 0. When p is an odd prime, choosing
an integer u ¢ pZ which does not become a square in F, we may take F}, to be
the function field over Q,, defined by the relation uz?+ py*—1 = 0. Over Qa, we
may take F, to be the function field defined by uz? +2y? — 1 = 0, where u is any
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odd integer such that (u? — 1)/8 is also odd. Moreover, for every place p, it is an
easy matter to decide if a given ‘local solution’ is isomorphic to Q,(z) or to Fj,.

Now, if F' is ‘global solution’ to our problem, then it is a ‘local solution’ every-
where. In other words, if F' is a function field over Q which becomes the rational
function field over Q, then F becomes isomorphic to one of Q,(z), F, over every
completion Q, of Q, including p = oo.

What can be shown is that every such F becomes isomorphic to Q,(x) for almost
every p, the places where it doesn’t — there are thus only finitely many of them —
are even in number, and, given any finite set ¥ of places, even in number, there
is a unique global solution which becomes 1somorphic to Fy, for all p € ¥ and to

Qp(z) for all p ¢ 3.

There are many equivalent ways — curves of genus 0, quadratic forms in three
variables, quaternion algebras — of expressing this principle.

It follows that if two global solutions F', F’ are ‘everywhere locally isomorphic’
(become isomorphic to each other at every place p, including p = 00), then they
are Q-isomorphic. This happy circumstance is expressed by saying that such
function fields obey the local-to-global principle. (In fact, in the case at hand, it
is sufficient to demand that F', F’ be isomorphic at all places but one; they are
then automatically isomorphic at the remaining place.)

The best accounts of this circle of ideas, in the equivalent language of quadratic
forms, are to be found in Serre’s Course in arithmetic and in Number theory
1, Fermat’s dream by Kato, Kurokawa and Saito. A theorem of Adrien-Marie
Legendre can be considered to be a precursor of local-to-global considerations,
see Weil’'s Number theory, an approach through history.

I don’t know of any classification of function fields over Q which become the
2-variable rational function field over every completion.

5. The Failure of the Local-to-Global Principle

In the last section we saw that the local-to-global principle holds for function
fields over Q which become isomorphic over Q to the rational function field. Such
function fields are of the form Q(z,y), az?+by? = 1, for some a,b € Q*, and it is
easy to decide when this field is isomorphic to the one defined by a’z? 4+ b'y% = 1
(a',b" € Q), because it suffices to check that they are isomorphic everywhere
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locally. This is a finite amount of computation because for any odd prime p
where all four numbers a, b, a’, b’ have valuation 0, the two function fields are
automatically isomorphic to the rational function field Q,(z).

In the early 1940s, Carl-Erik Lind and Hans Reichardt found the first examples of
function fields which violate the local-to-global principle. Equivalently, Reichardt
showed that 2y? = 1— 172" has solutions in every completion of Q but no rational
solutions — not even on the geometers’ ‘line at infinity in Py’ (not to be confused
with our ‘place at infinity’ oo of Q).

Lind’s thesis was reviewed by André Weil in the Mathematical Reviews, and it is
amazing to note that he does not mention this discovery. Nor does the reviewer of
Reichardt’s paper, in spite of the explicit title: Einige im Kleinen uberall losbare,
im Grossen unlosbare diophantische Gleichungen. It must be said that the first
instance of the failure of a local-to-global principle, due to Hasse, was discovered
by him after he had proved its validity for quadratic forms.

The most commonly cited example, originating with Ernst Selmer, is that of the
function field Q(x,y), 323 + 4y> + 5 = 0. Cf. Example 27.

Let o be a squarefree integer > 0 and consider the function field Q(Cy) defined
by the equation C, : ay? = 23 — z. It may happen that there are many function
fields F' over Q which become isomorphic to Q(C,) at every place p of Q. In
other words, Q(C,) may have ‘twisted forms’ F' which become isomorphic to it
when we extend scalars of F' and Q(Cy) from Q to Q,. Let us denote the set
of Q-isomorphism classes of such F' by S,. This is the set which appears in
Theorem 15.

Thus the problem of congruent numbers would be solved if we could settle the
following conjecture, whose generalisation Conjecture 26 is a major open question
in contemporary arithmetic.

Conjecture 16 (I Shafarevich and J Tate). For every a, the set S, — of Q-

isomorphism classes of function fields which become isomorphic to Q(Cy) at every
place — is finite.

The more standard version of this conjecture asserts the finiteness of the group
II(E,), whose definition is more advanced. The reader who knows it should be

able to prove that S, is finite if and only if III(E,) is finite [4]. The same remark
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applies to Conjecture 26.

We have seen that the congruent number problem amounts to the arithmetic

study of the equation ay? = 23 — z, which can be rewritten as y? = z® — a’z.

The rest of this report is devoted to a rapid survey of the arithmetic of equations
of the type y*> = f(z), where f € Q] is a monic cubic polymonial with distinct
roots (in Q).

6. Elliptic Curves: Results and Conjectures

In the next two sections, we enumerate some arithmetic properties of elliptic
curves. For the sake of simplicity, we work over the field Q; the only exceptions

being a result over finite fields, one over Q,, and an example over Q(v/—1).

An elliptic curve E over a field k is a curve defined in the projective plane by
(the homogenous version of) an equation of the type

flz,y) = y? + ayzy + azy — 2° — aa® —ayxr —ag =0 (a; € k) (5)

without singularities, a condition which says that the discriminant A — a certain
polynomial in the a; — is # 0, or equivalently that the corresponding function
field is of ‘genus 1, unlike the function fields which become isomorphic to Q(z),
which are of genus 0.

More precisely, the discriminant of f — the result of elliminating z, y from f, f.,
fy 18
A = —b3bg — 2°b] — 3B + 3%bobyby,

where
bg = a% -+ 22a2, b4 = aias + 2@4, b6 = ag -+ 22a6,

and
2 2
bg = bQCLG — a1a304 + a203 — Qy.

The curve F has a ‘point at infinity” O; for any extension L of k, there is a natural
group law on the set E(L) consisting of O and the solutions of (5) in L, uniquely
determined by the requirement that O be the neutral element and that the sum
of the three points (counted with multiplicity) in which E intersects a given line
be O; the groups E(L) are commutative. Associativity is not obvious, but follows
from a classical result in plane projective geometry.
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Elements of E(L) can be identified with triples (z,y,z) # (0,0,0) (z,y,z € L)
satisfying the homogenised version of (5); two such triples being considered the
same if each is a multiple of the other by an element of L*. The point O is the
one with homogenous coordinates (0 : 1 : 0). Two elliptic curves are said to be
isomorphic if the corresponding function fields over k are k-isomorphic.

Let C be a smooth proper absolutely connected k-curve and let J be its jacobian —
an abelian k-variety. If C has a k-rational point O, there is a unique k-morphism
C — J sending a point P to the class of the divisor P — O. If moreover C
has genus 1, then C' — J is an isomorphism. Conversely, if (a smooth, proper,
absolutely connected curve) k-curve C' admits a group law, then C' has genus 1
(and carries a rational point).

For surveys of arithmetic on elliptic curves, see Cassels [6] and Tate [7].

Theorem 17 (L Mordell, 1922). For every elliptic curve E over Q, the group
E(Q) is finitely generated.

This result was conjectured by Henri Poincaré around 1900. Mordell’s proof is a
generalisation of Fermat’s method of infinite descent — employed in the proof of
Theorem 3 — ; its modern renditions consist of two parts.

The first part shows that the group E(Q)/2E(Q) is finite. The second part stud-
ies a canonical real-valued ‘height’ function h on E(Q), coming from the various
absolute values of Q, which measure how ‘big’ the coordinates of a point are.
The method of infinite descent is distilled in the statement that a commutative
group I', endowed with such a function h, for which I'/2I" is finite, is necessarily
finitely generated.

Accounts of the proof can be found in the books by Weil and Kato-Kurokawa—
Saito cited above, as well as in Silverman-Tate, Rational points on elliptic curves.

Notice that the additive group Q, the multiplicative group Q*, and the ‘elliptic’
group E(Q) differ from each other greatly in their structure. By contrast, the
corresponding local result says that for an elliptic curve E over R, the group
E(R) has a subgroup of index at most 2 isomorphic to R/Z, and, for an elliptic
curve E over Q, (p prime), E£(Q,) has a subgroup of finite index isomorphic to
Z,. Thus, for an elliptic curve E over Q, although the three groups Q, Q*, E(Q)
have very different structures, they are ‘almost the same’ everywhere locally.
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For a given E over Q, the torsion subgroup of E(Q) is easy to determine (E
Lutz); for example, the torsion subgroup of C,(Q) consists of O and the three
points (—1,0), (0,0), (1,0) of order 2.

Theorem 18 (B Mazur [8]). Let E be an elliptic curve over Q. The torsion
subgroup of E(Q) is isomorphic to one of the fifteen groups

Z/mZ (m=1,2,...,10,12), Z/2Z x Z/2vZ (v = 1,2,3,4).

and each of these groups occurs as the tosrion subgroup of E(Q) for infinitely
many F.

No uncondtional method is known, however, for determining the rank of £(Q)
for a given E. The set of possible ranks for variable E (over Q) is not known

either, but N Elkies has recently produced examples where rk E(Q) is at least 28.
We shall mostly concentrate on the question of deciding if the rank is 0 or > 0.

Let p be a prime number and let E be an elliptic curve over Q,, given by (5).
We may assume by a change of variables that a; € Z,; the discriminant A is
then in Z,. If the a; € Z, can be so chosen that A € ZJ, we say that I has
good reduction at p; if so, equation (5), read modulo p, defines an elliptic curve
E, — uniquely determined by E and p — over the finite field F),, and there is a

homomorphism E(Q,) — E,(F,) which sends a point to the reduction modulo p
of any of its representatives (z : y : z) with coordinates in Z, and at least one
coordinate in Z . Any given elliptic curve E over Q has good reduction at almost

all primes because the defining equation (5) can be taken to have coefficients in
Z and because the discriminant A has only finitely many prime factors.

There is a criterion for good reduction (‘Néron-Ogg-Shafarevich’). Let Q, be
an algebraic closure of Q,. There is a unique extension of v, to a valuation

vp Q; — Q of which the residue field Fp is an algebraic closure of Fj,. The
inertia group is the kernel of the natural surjection Gal(Q,|Q,) — Gal(F,|F,); it

acts on the m-torsion ,, £(Q,) — the kernel of the multiplication by m — for every
integer m.

Theorem 19 (J-P Serre and J Tate [9]). An elliptic curve E over Q, has good

reduction if and only if the the action of the inertia group on ,E(Q,) is trivial
for every m prime to p.
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One might ask to what extent E is determined by the the number |E,(F,)| of
points modulo p for varying p. We say that two elliptic curves are isogenous if
their function fields can be embedded into each other.

Theorem 20 (G Faltings [10]). If E’ is an elliptic curve over Q such that
|E(F,)| = |Ep(F))| for almost all primes p, then E' is isogenous to E.

If two elliptic curves are isogenous, they have good reduction at the same primes
(cf. Theorem 19). We might wish to fix a finite set 7' of primes and ask for a
characterisation of all elliptic curves which have good reduction outside 7" — at
every prime p ¢ T'. The first step is the following result:

Theorem 21 (I Shafarevich, 1962). Given a finite set T of primes, there are
only finitely many elliptic curves over Q having good reduction at every prime

p¢T.

Another result of Shafarevich states that there are no elliptic curves over Q which
have good reduction everywhere. This is an anlogue of Minkowski’s theorem
according to which there is no finite extension of Q (other than Q itself) which
is everywhere unramified: the discriminant cannot be +1.

There is a sense in which the more fundamental quantity is not |E,(F,)| but
ap(E), defined by |E,(Fp)| = 1 — a,(E) + p, and there is sense in which the

following theorem is the analogue, for function fields of elliptic curves over finite
fields, of the famous Riemann Hypothesis: ‘The zeros in the critical strip 0 <

Re(s) < 1 of the zeta function ¢ of Q have real part 3.

Theorem 22 (H Hasse, 1933). Let A be an elliptic curve over a finite field k of
q elements, and define a by |A(k)|=1—a+q. Then |a| < 2,/q.

Returing to our E over Q, Birch and Swinnerton-Dyer argued that if E(Q) is
infinite, the groups E,(F,) (for p a prime of good reduction for E) should have
more elements ‘on the average’ than if E(Q) is finite. In view of Hasse’s theorem,
p
the product [], B (Fy)]

limit # 0 if the rank is 0. This is made precise in terms of the L-function of E.

should diverge to 0 if the rank is > 0, and converge to a

For a prime p of good reduction for E, we have the number a,(E); for ‘cohomo-
logical’ reasons, consider the infinite product (for s € C)
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L(E,s)=1]] !

p 1 —ap(E).p~® +pp >
Theorem 22 implies that this converges for Re(s) > %, but more is true:

Theorem 23 (A Wiles, R Taylor, F Diamond, B Conrad, C Breuil, 1995-2000).
The function L(E,s) admits an analytic continuation to the whole of C.

For the congruent number elliptic curves C,,, this is due to André Weil. There is a
way of introducing factors in L(FE, s) corresponding to the primes which divide A,
and indeed to the place co. This ‘completed’ L-function A(E, s) has a ‘functional
equation’ for s — 2 —s, just as the (-function, when ‘completed’, has a functional
equation for s — 1 — s.

Note that the product [] is formally equal to L(FE, 1). The above heuristic

P
P Ep(Fp)
considerations and extensive calculations on one of the first electronic computers
at Cambridge led to the following conjecture.

Conjecture 24 (B Birch and P Swinnerton-Dyer, 1965). The group E(Q) is
infinite if and only if L(E,1) = 0. More precisely, its rank equals the order of
vanishing of L(E,s) at s = 1.

The order of vanishing of the completed L-function A(E,s) is the same as that
of L(E,s) at s = 1. There is a refined version of Conjecture 24 which gives the

leading coefficient of A(E,s) at s = 1 in terms of the local and global arithmetic
invariants of the curve F; its formulation is subject to the truth of Conjecture 26.

Conjecture 13 follows from Conjecture 24, thanks to the following criterion:

Theorem 25 (J Tunnell [2]). For a squarefree integer a = jn (j = 1,2 and n
odd), one has L(Cy,1) =0 if and only if c¢;(n) = 0.

The elliptic curve E has the function field Q;(E) at the various places | of Q.
Just as we did in the case of the congruent number elliptic curves C,, we now
consider the set Sg of (isomorphism classes of) all function fields over Q which

becomes isomorphic to Q;(E) at every place [; of course, Q(E) belongs to Sg.

Conjecture 26 (I Shafarevich and J Tate). For every elliptic curve E over Q,
the set Sg s finite.
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The original conjecture asserts the finiteness, for every E over Q, of the group
HI(E) of ‘torsors’ under E which are ‘everywhere locally trivial’. This is equivalent
to the finiteness of Sg.

Yuri Manin has introduced an ‘obstruction’ to explain the failure of the local-
to-global principle for the function field Q(E) of an elliptic curve E over Q. He
shows that the finiteness of Sg is equivalent to his obstruction being the only
one.

The equation 23 +4>+ 60 = 0 can be put in the form (5) by a change of variables;
it therefore defines an elliptic curve.

Example 27 (B Mazur [4]). For E defined by z° + v + 60 = 0, the set Sg
consists of Q(E) and the function fields defined by

323 + 4y +5, 120% + 43 +5, 152° + 4%+ 1, 32°+20° + 1.

The best available result in the direction of Conjectures 24 and 26 to date,
the fruit of a succession of papers by numerous mathematicians, is a theorem of
Victor Kolyvagin, of which the theorem of Coates and Wiles (Theorem 14) is a
particular case, and which subsumes some of the results of Benedict Gross and
Don Zagier [11].

Theorem 28 (V Kolyvagin [12]). If L(E,1) # 0, then E(Q) is finite. If L(E,s)
has a simple zero at s = 1, then E(Q) has rank 1. In both these cases, the set
Sp 18 finite.

If the zero at s = 1 has multiplicity > 1, Conjecture 26 is needed (Cf. Theo-
rem 15):

Theorem 29 (C Skinner and E Urban [13]). Suppose that L(E,1) = 0 and that
the set Sg is finite. Then the group E(Q) is infinite.

There is a parallel theory of elliptic curves E over function fields F' over finite
fields. The analogue of Mordell’s theorem (Theorem 17) is true: the group E(F)
is finitely generated. K Kato and F Trihan [14] have proved the analogue of (the
refined version of) the Birch and Swinnerton-Dyer conjecture (Conjecture 24),
subject to the truth of the analogue of the Shafarevich-Tate conjecture (Conjec-
ture 26).

The study of ‘special values’ of L-functions, of which the refined conjecture of
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Birch and Swinnerton-Dyer is the prototype, is one of the major themes of con-
temporary arithmetic. This is a very active area in which P Deligne, S Bloch,
A Beilinson, K Kato, J-M Fontaine, B Perrin-Riou, among others, have made
seminal contributions.

7. Complex Multiplications

Let E be an elliptic curve over Q, defined by an equation f(z,y) = 0. Because E
has a group law, there are many embeddings of the function field Q(E) = Q(z,y)
into itself: for every integer n # 0, there is an embedding [n]z which sends z, y to
T, Yn, the coordinates of the multiple nP of the point P = (z,y); the embedding
[n]g is of degree n?. For example, when E is the congruent number elliptic curve

Cy (4) and n = —1, it is the automorphism z +— =, y — —y of the function field;
when n = —2, it is the degree-4 embedding given in Exercise 7.

In a sense, for most elliptic curves, these are the only embeddings of the function
field into itself. But there are some elliptic curves for which there are more
embeddings, for example the automorphism x — —z, y — iy (i being a chosen
square root of —1) of Q(C,) whose square is [—1]¢, . In such a case we say that the
elliptic curve E has ‘complex multiplications’; it then determines an imaginary

quadratic field K, the field of fractions of the ring of Q-endomorphisms of E. In
the case of the curves C,, it is Q(i). We say that E has complex multiplications
by K.

The arithmetic properties of elliptic curves differ vastly according as they have
complex multiplications or not. For example, for elliptic curves having com-
plex multiplications, the theorem ‘ L(E,1) # 0 = E(Q) is finite’ was proved by
Coates-Wiles (cf. Theorem 14) a good eleven years before Kolyvagin’s general

result (cf. Theorem 28); the analytic continuation of L(E,s) was proved by Weil
and Max Deuring in 1953-1957, much before the general result of Wiles and his
school in 1995-2000 (Theorem 23); the implication ‘ L(E,1) = 0 and Sg finite =

E(Q) infinite” was proved by Rubin (cf. Theorem 15) some fifteen years before
the general result of Skinner—Urban (Theorem 29).

We illustrate the differences by three examples. For the first, recall that an
elliptic curve A over F,, is called supersingular if the p-torsion ,A(F,) is reduced
to {O}, or, equivalently for p # 2,3, if |A(F,)| = 1 + p (equivalently, a = 0, in
the notation of Theorem 22). Returning to our E over Q, we ask: How often is
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E, supersingular? Deuring showed if £ has complex multiplications, then this

happens for half the primes p (cf. Example 33); if not, Serre proved that the set
of supersingular primes has density 0. That it is infinite is a relatively recent
result.

Theorem 30 (N Elkies [15]). For every elliptic curve E over Q, there are
infinitely many primes p at which E, is supersingular.

For the second example, recall that for every prime p, if we adjoin the p-torsion

of the multiplicative group Q*, which consists of pth roots of 1, to Q, we get
a galoisian extension Q(pu) whose group of automorphisms is Gal(Q(,1)|Q) =
GL,(F,). For an elliptic curve E over Q, the p-torsion of F(Q) is a 2-dimensional
vector F-space; if we adjoin it to Q, we get a galoisian extension Q(,F). What

is Gal(Q(,E)|Q)?

Theorem 31 (J-P Serre [16]). Suppose that E does not have complex multipli-
cations. Then the group of automorphisms of Q(,E) is GLo(Fy) for almost all
— all but finitely many — primes p.

The corresponding local result for E over Q; says, at least in the case of good
reduction, that Gal(Q;(,£)|Q;) is cyclic for I # p (cf. Theorem 19).

If £ (over Q) has complex multiplications, the group of automorphisms is much
smaller: if K — an imaginary quadratic field — is the field of complex multiplica-
tions, then K (,F) is an abelian extension of K. However, such E serve a different,
if related, purpose.

Recall that the theorem of Kronecker-Weber asserts that if we adjoin the entire
torsion subgroup of Q* — all roots of 1 — to Q, we get its mazimal abelian
extension. Generating the maximal abelian extension of other number fields is a
major open problem (Kronecker’s Jugendtraum, Hilbert’s Problem 12); the theory
of complex multiplications provides the answer in the case of imaginary quadratic
fields, as in the next example.

Example 32. Let E be the elliptic curve y> = 3 + x, which has complex
multiplications by Q(i) (i = v/—1). If we adjoin the entire torsion subgroup of

E(Q) to Q(7), we get its mazimal abelian extension.

Our third example concerns a ‘formula’ for a,(E) for a fixed E and varying p.
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There is indeed such a formula if £ has complex multiplications, as illustrated
by a theorem of Gauss about the curve 2% + y*> + 1 = 0 (which can be put in
the canonical form (5), and has complex multiplications by Q((3), where (3 is a
primitive cube root of 1). It uses the fact that for a prime p = 1 (mod. 3), there
is a pair of integers (¢, d,), unique up to signs, such that 4p = 012, + 27d12,; to fix
the sign of ¢,, assume that ¢, = —1 (mod. 3).

Exmaple 33 (C Gauss, 1801). Let E be the elliptic curve 2> +y>+1 =0 andp a
prime. If p=1 (mod. 3), then ay(E) = c,. If p = —1 (mod. 3), then a,(E) = 0.

See Silverman—Tate for a proof. Note that this implies Theorem 22 for E.

By contrast, if £ does not have complex multiplications, the behaviour of the
ap(E) is entirely different. Mikio Sato and John Tate independently arrived at a

conjectural distribution law for v,(E) = a,(E)/2,/p, which lies between —1 and
+1 for every p (cf. Theorem 22). How often does it lie in [5, 6] C [—1,+1]?

Conjecture 34 (M Sato and J Tate, 1960). Suppose that E does not have com-
plex multiplications, and let [3,6] C [—1,+1] be an interval. Then the proportion
of primes p for which v,(E) € [3,0] is given by

2 )
—/vl—xQchc.
™JB

This conjecture has been proved, subject to a mild technical hypothesis on E, by
Laurent Clozel, Michael Harris, Nicholas Shepherd-Barron and Richard Taylor in
a series of three papers in early 2006. The technical hypothesis demands that
E have ‘multiplicative reduction’ at some prime p, which means roughly that
the best possible reduction at p is not an elliptic curve E, as in the case of
good reduction, but the multiplicative group (and not the additive group — the
third possibility). An algorithm due to Tate allows one to determine the type of
reduction at any given p in terms of the coefficients a; (5) defining E. Concretely,
although we cannot choose a; € Z, with minimal v,(A) so as to have v,(A) = 0,
they can be so chosen as to have v,(cs) = 0, where ¢y = b3 — 2°.3.b4, and the b;
are displayed after equation (5). It is only a matter of time before this hypothesis
is removed.

Theorem 35 (L Clozel, M Harris, N Shepherd-Barron and R Taylor [17]). Con-
jecture 34 is true if E has multiplicative reduction at some prime p.
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8. Modular Forms

We have not mentioned them, although they have appeared in these notes without
being named. If we evoke them here, it is only to say that most of the spectacular
recent results which we have enumerated would not have been possible without
their help. Take the analytic continuation of L(E,s) (Theorem 23): the crucial
result (Wiles and others) is to show that the sequence (a,(E)), defines a modular
form.

Results of Gross—Zagier and of Kolyvagin (Theorem 28), which predate Wiles,
were enunciated only for those elliptic curves whose L-functions have this mod-
ulariy property; thanks to Wiles and his successors, we now know that they all
have.

Mazur’s determination of the possible torsion subgroups (Theorem 18) involves
the study of modular curves, which are intimately related to modular forms.

Tunnell’s criterion (Theorem 25) is actually an expression for L(C,, 1) in terms
of (the ‘real period’ of Cy and) the coeflicients ¢;(n) of certain modular forms of
half-integral weight (cf. Notation 10).

The role of automorphic forms — a generalisation of modular forms — is even
greater in the results of Skinner-Urban (Theorem 29) and in the proof of the
Sato-Tate conjecture (Theorem 34). It is unlikely to diminish in the future: more
and more L-functions are going to become automorphic, fulfilling the prophetic
vision of Robert Langlands [18].

For a first introduction, apart from Serre’s Course, see the book by Koblitz and
Knapp’s Elliptic curves.
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