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In this article we discuss how the concept of
quantum of energy came into being from the
analysis of black-body spectrum. We start our
discussion with the work of Wien who discovered
the general form of black-body spectrum and on
the basis of his discovery proposed a formula to
obtain power radiated from a black body as a
function of its temperature and the frequency of
radiation. We then focus on the work of Planck
who modified Wien’s formula to bring it in close
agreement with the experimental results. How-
ever, the real greatness of Planck is displayed in
his interpretation of the modified formula that
led him to introduce the revolutionary concept
of the quantum of energy. How Planck arrived
at this conclusion is described in detail. We con-
clude the article with a discussion of the gener-
alization of the concept of quanta by Einstein to
propose quantization of radiation as well as of
mechanical vibrations.

Introduction

The story of the concept of quantum of energy is not
only fascinating but also an epoch-making one as it
completely changed the way we thought about Nature.
What started as a simple interpolation formula for mak-
ing theoretically derived result for the black-body spec-
trum match with its experimental counterpart was des-
tined to change history when Planck made an attempt
to understand what the formula meant. Planck’s analy-
sis implied that oscillators that generated electromag-
netic radiation could have energies only in units of hv,
where h is the Planck’s constant and v is the frequency
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of the oscillator. After this revolutionary idea was put
forth, it was generalized and given a much wider mean-
ing by Einstein who showed that even radiation came in
packets of energy. Further, he proposed that not only
oscillators connected with electromagnetic radiation but
mechanical oscillators also take energy only in units of
hv.

How did these ideas come into being? How did Planck
make his initial breakthrough? These are the ques-
tions that we are going to address in this article. We
start with a discussion of the background against which
Planck came into the scene. We first discuss what the
black-body spectrum signifies? We then briefly present
the results from electromagnetic theory, thermodynam-
ics and statistical mechanics that were known in the last
decade of the nineteenth century and which are relevant
to understanding the black-body spectrum. We then re-
view the pathbreaking work that Wien had done in his
analysis of the black-body spectrum; he was awarded
the Nobel Prize for this work. However Wien’s formula
for the spectrum of black-body radiation, although accu-
rate for large values of v/T, deviated from experimental
results for small values of v/T". This set the stage for
Planck to make his seminal contribution of introducing
the concept of quanta. The work by Planck forms the
major part of the article. The article concludes with a
discussion of Einstein’s contribution in making the con-
cept of quanta general and concrete.

A Black Body and its Spectrum

When radiation is incident on an object, some part of it
gets absorbed by the body, some part gets reflected and
the rest gets transmitted. Let us define the absorptive
power a of the body as the fraction of incident energy
that is absorbed; similarly reflectivity r is the fraction
of incident energy that is reflected and the transmission
coefficient ¢ is the fraction that is transmitted through

Perfect black body
is defined to be the
one thatis a
perfect absorber.
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Black soot of lamp
absorbs about 96%
of the visible light
incident on it.
Recently a new
material has been
made using carbon
nanotubes that

absorbs 99.955% of
radiation falling on it

and hence sets a
record for being the
darkest material.

the body. Further, these quantities may also depend on
the wavelength of radiation. For example, the ordinary
glass in window panes lets visible light pass through it
but absorbs ultraviolet radiation. We define the absorp-
tive power, reflectivity and the transmission coefficient
for each wavelength \ as ay,r) and t. Thus, if radiation
between wavelengths A and A + d\ with energy d@, is
incident on a body, the energy absorbed, reflected and
transmitted will be given as follows:

energy absorbed = a) dQ
energy reflected = r, d@ (1)
energy transmitted = ¢, dQ,

It is evident that
ax+ry+ity=1. (2)

Definitions above are sufficient to describe a black body.
The name might have come from the observation that
black colour substances appear to absorb a lot of radia-
tion. Thus a perfect black body is defined to be the one
that is a perfect absorber. In other words, it absorbs
all the radiation of any wavelength falling on it and no
portion of it is reflected or transmitted. Thus for a black
body

ay) = 1,
™ = 0, (3)
tx = 0.

One naturally occurring substance that comes close to
being a black body is the black soot of a lamp that
absorbs about 96% of the visible light although longer
wavelength radiation passes through it. (Recently a new
material has been made using carbon nanotubes that
absorbs 99.955% of radiation falling on it and hence sets
a record for being the darkest material (See Yang et al.,
Nano Letters, 2008)). Thus a perfect black body has to
be designed. This is done by taking a closed cavity with
a small hole in it for radiation to enter and making sure

136

W RESONANCE | February 2008



GENERAL | ARTICLE

that from the opposite side of the hole, the radiation gets
reflected in some other direction, Figure 1. To make
sure that no radiation is transmitted, i.e. t), = 0 for
all wavelengths, the walls of the cavity are made thick.
Thus for the walls of such a cavity, ay +ry = 1.

We now show that the cavity in Figure 1 acts as a black
body. Consider radiation of wavelength A entering from
the hole, as shown by an arrow in Figure 1 and subse-
quently getting multiply reflected from the inner sides of
the cavity. As it reflects, fraction a, of it gets absorbed
and only fraction r) gets reflected. When reflected por-
tion of the radiation strikes the walls again, a further
fraction a, of it gets absorbed. Thus finally all the ra-
diation entering the cavity gets absorbed in it.

Mathematically, this is seen easily by adding the frac-
tions of radiation absorbed during each strike on the
walls of the cavity. Thus,

total fraction of radiation absorbed

:CLA+7”ACLA+7”/2\CL/\+"'

=ax(I+ra+ri4--)
_ ’ (4)

1—7y

= 1.

In the above equation the fact that a) + ) = 1 is used.
The prefect absorption of radiation discussed above is
true for any wavelength. Thus the cavity makes a perfect
black body. Further down, after defining the emissive
power of a body, we will give another argument to show
that the cavity considered here is indeed a black body.

A body heated to a certain temperature also emits ra-
diation. Now we define the emissive power e, of a body.
Consider a small area dA of a body shown in Figure 2.
We measure energy uyd\ being emitted in the direction
perpendicular to dA in a small solid angle d€2 in time dt

42\
S

Figure 1. A cavity with a
holein it and jagged edges
on the opposite sides to
diffuse the radiation enter-
ing from the hole.

A body heated to a
certain
temperature also
emits radiation.
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Figure 2: Radiation energy
being emitted from a small
area dA of a body in solid
angle dQ perpendicular to
the area dA.

Emissive power of a
body at wavelength A
is the energy emitted

per unit time per unit

area in a unit solid
angle perpendicular to
its area in the unit
range of the
wavelength.

and define the emissive power ey by the relation
exd = ———— (5)

In other words, emissive power of a body at wavelength A
is the energy emitted per unit time per unit area in a unit
solid angle perpendicular to its area in the unit range
of the wavelength. Having defined emissive power we
now make observations about radiation inside a hollow
cavity, e.g., the one shown in Figure 1, followed by an
explanation:

(i) Radiation in a cavity is isotropic: Take a small body
which has parts made up of materials of different emis-
sive power and absorption coefficient. No matter how
it is oriented inside the cavity, it will always be in equi-
librium with the radiation inside. This shows that ra-
diation coming from any direction inside a cavity must
have the same quality i.e., it is isotropic.

(ii) Nature of radiation is independent of the material
and geometry of cavity: Take a small body with emis-
sive power ey and absorption coefficient ay, and put it
inside a cavity with temperature 7. The body comes
in equilibrium after some time, attaining the same tem-
perature. If the radiation inside corresponds to that of
a body with emissive power E), then equilibrium condi-
tion — the radiation absorbed is the same as radiation
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given out by the body — gives (Appendiz 1)

€x
ax

= E,.

Equilibrium of the same body, when put inside another
cavity at the same temperature but a different emissive
power Ef will give

which implies that Ey = FEj. Thus, the nature of ra-
diation inside a cavity has a universal character and is
independent of the material it is made of or its geometry,
and depends only on the temperature.

(iii) Radiation in a cavity corresponds to that of a black
body: After point (ii) this is quite easy to see. Take
the body that is put inside the cavity to be a perfect
black-body for which a), = 1. Then E, turns out to the
same as ey for a black body. As a corollary, Kirchhoff’s
law for emissive power and absorption coefficient also
follows: The ratio of emissive power of a body and its
absorption coeflicient is equal to the emissive power of
a black body.

(iv) Universality of Ey: Finally, as noted above and in
Appendiz 1, as a result of Kirchhoff’s law, black-body
radiation has a universal character about it and depends
only on the temperature of the black body.

The properties of radiation in a cavity described above
are easy to see in a collection of burning coals. If one
looks at a pocket made by three or four coals, it looks
brighter than the rest of the fire, demonstrating that
the emissive power of a cavity is comparatively larger. In
such a pocket it is difficult to make out the surface of the
coal forming the cavity, indicating the isotropic nature
of the radiation inside. Similarly, to observe Kirchhoff’s
law, all we need to do is to put our hands close to a piece
of wood and a piece of iron at the same temperature;

The nature of radiation
inside a cavity has a
universal character
and is independent of
the material it is made
of or its geometry, and
depends only on the
temperature.

If one looks at a
pocket made by three
or four coals, it looks
brighter than the rest
of the fire,
demonstrating that
the emissive power of
a cavity is
comparatively larger.
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If we touch a piece
of wood and a
piece of iron lying
in the sun for the
same amount of
time, we would find
that iron is much
hotter.

we will find that iron feels hotter because it emits more
radiation. This is consistent with iron being a better
absorber; if we touch a piece of wood and a piece of iron
lying in the sun for the same amount of time, we would
find that iron is much hotter.

Having understood how to obtain a nearly perfect black-
body radiation (slight departure from absolute perfec-
tion may arise because of the hole made in the cav-
ity), the properties of radiation coming from a black-
body could now be studied. This was done in the later
half of the nineteenth century. In 1879 Stefan deduced
a formula for the dependence of the total power radi-
ated from a black body. Accordingly, the total power
(summed over all wavelengths) radiated from a black
body is proportional to the fourth power of its temper-
ature. Thus the intensity I of radiation (power per unit
area) coming out of a black body is given as

I=0T" (6)

where o is a constant with the value of 5.70 x 1078 W
m~2 K=%. In 1884 this law was derived theoretically by
Boltzmann using properties of electromagnetic radiation
and thermodynamics as follows:

Consider the radiation in a cavity at temperature 7. In
an isothermal thermodynamic process where some heat
is given to the cavity and its volume changes, the first
law of thermodynamics gives

a8 ou
T|—| =(=—| +p, (7)
oV ). ov ).
where S is the entropy of the radiation, U its internal en-
ergy, p its pressure and V' the volume occupied by it (the
volume of the cavity). Now U = uV and p = ¢ in terms
of the radiation density u inside the cavity (Appendiz 2).

Further by Maxwell’s relation <g—‘5/)T = <g—gﬁ)v. Substi-

tuting all these relations in equation (7) gives (u remains
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unchanged during an isothermal process) What occupied
ou scientists a great deal
ar ), at that time, however,
and finally led to the
which in turn implies that revolutionary concept
f ta of
T (9) of quanta of energy,
was the black-body
As shown in Appendiz 2, intensity of radiation coming spectrum. This forms
out of a cavity is fu. Thus the intensity also is pro- the basis of this article
portional to T#. This law is therefore known as Stefan— and we describe it
Boltzmann law. What occupied scientists a great deal next.

at that time, however, and finally led to the revolution-
ary concept of quanta of energy, was the black-body
spectrum. This forms the basis of this article and we
describe it next.

When we study the spectrum of a black body at tem-
perature T, it is done by plotting the spectral density
against the wavelength of the radiation. Let us describe
how to measure spectral density and that would make
its meaning also clear. Consider the radiation between
wavelengths A\ and A+d\ coming out of a small area dA
of a black body and measure the amount of energy d¥
that is radiated in time d¢. Dividing dF by dA, dA and
dt gives the spectral density. Thus spectral density is
the power per unit area per unit wavelength, i.e., it de-
scribes how the energy radiated from a black-body is
distributed over different wavelengths. Sometimes one
may ask, is it necessary to find energy per unit area or
should the total power be used? Or should one measure
energy per unit time (that is power) or energy radiated
in a given time interval? The answer is that it does not
matter as long as we are interested in measuring how
much energy is radiated at a given wavelength. Divid-
ing by the area or time just rescales this distribution.
The spectral density of black-body radiation obtained
by Lummer and Pringsheim (Lummer and Pringsheim,
Verhandl. der Deutschen Physikal. Gessellsch. Vol.1,
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Figure 3. Plotofblack-body
data obtained by Lummer
and Prigsheim in 1899.
Solid lines are the experi-
mental data and dotted
lines is the Wien’s formula
given by equation (24).
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p.213, 1899) at several different temperatures is shown
in Figure 3. On the y-axis is shown the total energy
radiated at between A and A 4+ d\ plotted against the
wavelength shown on the z-axis. Two observations are
made regarding the spectral density:

(i) At a given temperature, small energy is radiated at
short wavelengths. As the wavelength increases, so does
the energy radiated but then it decreases again for longer
wavelengths. Thus for a given temperature, maximum
energy is radiated at a particular wavelength Ajax.

(ii) As the temperature of a black body increases, the
wavelength A, .« becomes shorter.
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The challenge during the last decade of the nineteenth
century — and our focus in this article — was to under-
stand how this distribution arises.

The first successful attempt to understand the shape of
the black-body spectrum was made by Wien that we
now discuss.

Wien’s Analysis (1893,1894)

To understand the shape of black-body spectrum, Wien
analyzed how the black-body spectrum changes as the
temperature of a cavity is changed. For this, he consid-
ered adiabatic change in the volume of a spherical cavity.
Thus no heat is added to or taken away from the cavity.
Let us take the cavity to be expanding. Since some work
is done in the expansion, the cavity will cool down and
the radiation inside will change to that corresponding
to the new temperature. Thus if the radiation density
is known at the initial temperature, we can figure out
how it will look at the new temperature by analyzing the
adiabatic expansion. Keep in mind that results derived
on the basis of spherical cavity are absolutely general
since the nature of radiation in a cavity does not de-
pend on its shape or size. Let us take a cavity of radius
R at temperature T'. As it expands adiabatically, let the
change in its volume and internal energy be dV and dU,,
respectively. If the radiation density in it is u, the pres-
sure p = 5 and dU = Vdu + udV. The application of
the first law of thermodynamics, dQQ = dU + pdV then
gives:

u du 4dV
0=Vd dV + —dV —_—= . 10
u+ udV + 3 or — 3V (10)
Integration then leads to
uV'3 = constant. (11)

Since V o R? and by Stefan-Boltzmann law u oc T4,
equation (11) gives

T o R (12)

To understand the

shape of black-body

spectrum, Wien
analyzed how the

black-body spectrum

changes as the
temperature of a
cavity is changed.
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Figure 4: As radiation gets
reflected from the moving
walls ofthe cavity,its wave-
length changes due to the
Doppler shift.

Thus as the radius of the cavity increases, its tempera-
ture goes down in inverse proportion to its radius. Fur-
ther, as the cavity expands, the wavelength of each wave
in it also increases due to Doppler shift during reflection
from the moving cavity walls. If we calculate the in-
crease in the wavelength, we can see how a portion of
the spectral density curve shifts in wavelength as the
temperature of a black body changes.

To calculate change in the wavelength, consider walls of
the cavity moving slowly with speed v so that in time
At, its radius increases by AR = vAt (Figure 4). Since
a wave travels a distance of 2Rcosf between two reflec-
tions, time taken for each reflection is MLCOSG. Thus in
time At, the number of reflection that a wave undergoes
is 21530'; 5. In each reflection, wavelength of the wave
changes due to the Doppler shift by an amount QVC—COSG)\.
Thus during time interval At, the total change in the

wavelength is

cAt 2v cos @ AR
= X A= A, (13)
2R cos c R

AN

which implies that
A x R. (14)
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ufh,)

uf )

This combined with equation (12) gives
Ao T71 or AT = constant. (15)

Equation (15) is known as Wien’s displacement law. It
is interpreted as follows:

As the cavity expands, it cools down from temperature
T; to temperature T, and a given section of width d\; of
the spectral density at wavelength A1 moves to a section
of width d\2 at wavelength Ay (Figure 5). The relation-
ship between Ti, T, A1, A2, dA\; and d); is given by
Wien’s displacement law as follows:

AT = NoTh,

d)\l T1 = d)\z TQ. (16)
Thus by Wien’s displacement law, if we identify a spe-
cific feature of the spectral density curve at tempera-
ture T that appears at wavelength A\, the same feature
would appear at wavelength Ay for black-body spectrum
at temperature To, with these wavelengths and tempera-
tures related by Wien’s displacement law. In particular,
the wavelength Apac, where the maximum of the spec-
trum occurs, should shift with the temperature of the
black body so that

Amax] = constant. (17)

Figure 5. As a cavity at
temperature T, expands,
small portion of width dA
of spectral density at A4,
moves over to portion of
width dA4, at wavelength 4,
whilethetemperatureofthe
cavity changes to T,.

1
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Table 1. Experimental veri-
fication of Wien’s displace-
ment law.

Temp K ey (Micron) A T(micron-K)
1646 1.78 2928
1449 2.05 2970
1259 2.33 2933
1095 2.61 2859

995 2.94 2925
904 3.17 2866
725 4.06 2943

The law was verified by Lummer and Pringsheim in
1899. The numbers for Ay for a given temperature
T, read from Figure 3, and the product \,.xT are given
in Table 1.

It is clear from 7Table 1 that the black-body spectrum
indeed follows Wien’s displacement law. We must point
out that if some other feature were chosen as an identifier
of the wavelength, the value of AT would be different for
that feature but remains unchanged as the temperature
of the black body changes. The reader may verify this
for the wavelengths where the emitted power is half of
the maximum; for the left of A\y. this value is about
1825 micron-K and for the right the value is about 5500
micron-K at all temperatures.

Obtaining the displacement law was only the first step
in Wien’s analysis. He wanted to understand the shape
of the black-body spectrum. For this, he applied Ste-
fan’s law for energy contained in the spectrum between
wavelengths A1 and A\; + d\;. Accordingly,

o () o

This combined with equation (16) gives

u()q) _ u()\2>
7 73

= constant. (19)
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Temp K E o E, .. °x 10
1646 135.5 1121
1449 73.3 1147
1259 34.3 1084
1095 177 1124

995 111 1138
904 6.7 1110
725 2.2 1098

As discussed in Appendiz 2, the radiation coming out of
a cavity is directly proportional to the radiation density
inside it. Thus the emissivity defined by equation (5)
should also satisfy

% = % = constant. (20)
As noted earlier, the constant above would be different
for different wavelengths. Equation (20) was also ver-
ified by Lummer and Pringsheim. Radiated emission
from a black body as a function of the wavelength for
different temperatures as obtained by them is shown in
Figure 3. If we now read the emitted radiation F ..
at Amax for different temperatures and divide it by the
fifth power of the temperature, we should get a constant
according to equation (20). This is done in Table 2 with
the numbers taken from the plot of Figure 3.

As is clearly seen from Table 2, equation (20) is satisfied
to a high degree of accuracy by experimental numbers
for the black-body spectrum. It is thus established that
for a point in the black-body spectrum, specified by a
wavelength at a given temperature, the ratio given by
equation (19) or (20) remains unchanged as one looks at
another temperature and the corresponding wavelength
given by equation (15) or (16). Thus this ratio must be
a function f(AT) of the product AT of the wavelength

Table 2. Experimental veri-
fication of equation (20).
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and temperature. This makes the ratio of equation (19)
dependent on the wavelength at a given temperature and
at the same time keep it unchanged for points related by
equation (15) as the temperature of the body changes.

Thus in general
u(})

] (21)
Using equation (15), this can also be written as
F(\T)
u(N) = O (22)

Since u(\)d\ is the energy contained in the range d\,
the formula above is transformed to a function of the
frequency v = { by writing d\ = —-%dv and is given as

3 1%
= — 23
ulr) = (). (23)
where ¢ is an unknown function.

We pause here for a moment to marvel at Wien’s clever
use of thermodynamics to provide insights into the na-
ture of black-body spectrum.

Next, Wien took one more step and assumed that the
frequency of radiation emitted by molecules should be
proportional to their kinetic energy, i.e., imv? = av,
and the intensity of radiation at that frequency would
depend on the number of molecules at that kinetic en-
ergy, i.e., it is proportional to e_%mUQ/kT, where k is
Boltzmann’s constant. Based on this, he proposed the
following formula for the density of black-body radiation

A Av3
= S embAT AV —bvfeT (24)

AD ct
This formula gave a very good fit to the black-body spec-
trum as a shown in Figure (3). Notice that the constant
b can be related to A, for temperature 7" by maximiz-
ing u above with respect to A and gives b = 5\ . 1. Al-
though there appears to be some deviation from the ex-
perimental curve for large wavelengths, the match near
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the maximum is nearly perfect. In any case, experimen-
tal numbers are more accurate near the maximum so the
formula provided by Wien was really a satisfactory one.
For his pathbreaking work, Wien was awarded the No-
bel Prize in 1911. The importance of his work is clearly
reflected by the Nobel Prize presentation speech. Some
excerpts from the speech are given below:

“In 1893 Wien published a theoretical paper which was
destined to acquire the utmost importance in the devel-
opment of radiation theory”.

“Wien’s displacement law provides half the answer to the
problem”.

“The importance of Wien’s displacement law extends in
various directions”.

“The method has successfully been applied to the deter-
maination of the temperature of our light sources, of the
sun and of some of the fixed stars, and has yielded ex-
tremely interesting results”.

“In 1894 he deduced a black-body radiation law. This
law has the virtue that, at short wavelengths, it agrees
with the above mentioned experimental investigations by
Lummer and Pringsheim”.

Towards the end of the speech it is mentioned that “It
was Planck who solved this problem and his formula
provides the long sought-after connecting link between
radiation energy, wavelength and black body tempera-
ture”. Thus the work done by Wien really set the stage
for Max Planck to enter the scene.

Planck’s Work: The Birth of Quanta

Max Planck had studied physics under Helmholtz and
Kirchhoff at Berlin. He was highly fascinated by the sec-
ond law of thermodynamics and had self-studied Clau-
sius’ papers. As a researcher he had been investigat-

The work done by
Wien really set the
stage for Max
Planck to enter the
scene.
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Planck started by
analyzing the
energy equilibrium
between a
radiating dipole
and a radiation
field.

ing how the second law could be applied to different
physics problems. In 1894 he turned his attention to the
problem of black-body radiation. Please recall that the
analysis of Wien discussed above had come out in that
year. In the following account of Planck’s introduction
of the concept of quanta, note the dates to appreciate
the pace at which Planck must have worked.

Planck started by analyzing the energy equilibrium be-
tween a radiating dipole and a radiation field. By equat-
ing the energy absorbed by an oscillator to the energy
radiated by it — so that equilibrium exists between the
radiation in a cavity and the oscillators on its walls ab-
sorbing and radiating energy — he found that the energy
density u(v) in a cavity is related to the average energy
E(v) of a radiating oscillator by the following formula:

u(v) = 87;3” E(v). (25)

Thus if we could calculate the average energy per os-
cillator, the results for spectral density could also be
obtained through equation (25). This is what Planck
had to say about it in his Nobel Lecture:

“The noteworthy result was found that this connection
was in no way dependent upon the nature of the res-
onator, particularly its attenuation constant — a circum-
stance which I welcomed happily since the whole problem
thus became simpler, for instead of the energy of radi-
ation, the energy of the resonator could be taken and,
thereby, a complex system, composed of many degrees
of freedom, could be replaced by a simple system of one
degree of freedom.”

It must be pointed out that taking F(v) = kT in equa-
tion (25) leads to the Rayleigh—Jeans formula,

8 2
u(v) = ﬂ: kT (26)
c
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for black-body radiation, and it is found to fit the spec-
trum well at large wavelengths and high temperatures.
Having obtained the result above, Planck now started
attacking the problem of black-body spectrum and failed
in his initial attempts. Planck then started applying sec-
ond law of thermodynamics for further investigations.
According to him (Nobel Lecture):

“So there was nothing left for me but to tackle the prob-
lem from the opposite side, that of thermodynamics, in
which field I felt, moreover, more confident. In fact my
earlier studies of the Second Law of Heat Theory stood
me in good stead, so that from the start I tried to get a
connection, not between the temperature but rather the
entropy of the resonator and its energy, and in fact, not
its entropy exactly but the second derivative with respect
to the energy since this has a direct physical meaning
for the irreversibility of the energy exchange between res-
onator and radiation.”

As is clear from the quote above, Planck was concerned
with the irreversibility of the energy exchange between
resonator (oscillator) and radiation. In particular, if res-
onator was away from equilibrium then its entropy must
increase as it moved towards equilibrium. What does it
mean it terms of its second derivative with respect to
the energy?

Suppose a system is away from the equilibrium energy
by an amount AFE. As it moves towards equilibrium,
its energy changes by an amount dE£. Then Planck first
showed that the change in its entropy is proportional
to AE x dE x %. Thus for entropy to increase as
the resonator energy approached its equilibrium value,
the second derivative % must be negative since AE
and dF will have opposite signs in such a process. He
therefore defined the entropy of an oscillator to be

s— I <i> , (27)

Ov ave

Planck was
concerned with the
irreversibility of the
energy exchange
between resonator
(oscillator) and
radiation.
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From the work of
Rubens and
Kurlbaum, it became
absolutely clear that
for large wavelengths
Wien'’s formula
underestimates the
experimental results
at high temperatures.

where e is the base of natural logarithm. The formula
can be derived from Wien’s law as is easily seen. Com-
bine equation (25) with Wien’s formula of equation (24)
to write the energy of an oscillator as

E(w)=ave T (¢ > 0and 8> 0). (28)
Invert this equation and use <g—g)v = % to get
08 1 E
A B <—> , (29)
oF |, 163% av

which is integrated to get equation (27). What is impor-
tant, however, is that the second derivative of the en-
tropy comes out to be negative thereby satisfying Plan-
ck’s requirement. The second derivative simply is

9%S 11 20

OF?  BvE (30)
showing the consistency of the Wien’s law with the prin-
ciple of increase of entropy. After this things started
moving really fast. Planck presented these results in
June 1900, but soon after, in October 1900, Rubens and
Kurlbaum (Rubens and Kurlbaum, Berliner Berichte,
pp-929-941, 1900) showed convincingly that Wien’s law
deviated from experimental numbers at large wavelengths
and high temperatures. The results of their investiga-
tions are shown in Figure 6 where the energy emitted at
wavelength of 244 is plotted against temperature. Re-
call that such a deviation for large wavelengths was also
noticed in Figure 3 but Rubens and Kurlbaum worked at
a wavelength well beyond the upper limit of the results
of Lummer and Pringsheim displayed in Figure 3. Thus
from their work it became absolutely clear that for large
wavelengths (small frequencies) Wien’s formula under-
estimates the experimental results at high temperatures,
whereas the Rayleigh—Jeans formula (equation 26) is
very close to the experimental numbers. Rubens and
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Kurlbaum had told Planck about their results before
publishing them. So Planck got back to work to modify
Wien’s formula and got a new expression for the black-
body spectrum that fitted well with experimental data
at all temperatures and wavelengths. Rubens and Kurl-
baum also compared Planck’s formula with their exper-
imental results and showed beyond any doubt that his
formula matched perfectly with the experiments (Figure
6). We now describe how Planck obtained his formula.

From experiments of Rubens and Kurlbaum, it was clear
that at small frequencies and high temperatures Ray-
leigh—Jeans formula was close to the experimental re-
sults. Thus the entropy expression (equation 27) and
its second derivative (equation 30) could not be correct
in this range. Since the Rayleigh—Jeans formula is based
on the energy F of the resonator being proportional to
the temperature 7', the first derivative of the entropy S

Figure 6. Experimental re-
sults of Rubens and
Kurlbaum compared to dif-
ferent theories of black
body radiation (Rubens
and Kurlbaum, Annalen der
Physik, Vol.4, p.649,1901).
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of an oscillator, (22) = L would be inversely propor-
> \OE vy
25 1

tional to its energy. This implies that % o %z. On the
other hand, Wien’s formula gave the second derivative
to be inversely proportional to F. The correct expres-

1
T

sion for the second derivative should go from % to %
as the temperature increased. Planck therefore interpo-
lated between these two limits and wrote

928 a

= — >0, b>0). 31
957 ~ Bt B @70 ) (31)
Integrating this gives
E
==t ) (32)
oE b E+0b

Equating this to % and inverting the equation gives

b
B = < (33)

when combined with equation (25) this leads to

82 b

3 ob/al _1°

u(v) =
Since by Wien’s analysis, u(v) has the form given by
equation (23), b in the equation above must be propor-

tional to the frequency v. Taking b = fv, we get

8rv? 15}
u(y) = 63 eﬁu/aT _ 1

(34)

(35)

This is Planck’s formula in its primitive form. The con-
stants 3 and a could be calculated by comparing with
Wien’s formula and matching with the coefficients em-
ployed there. The numbers could also be obtained from
Stefan’s constant and the value of A.x7. As mentioned
above, it fitted the data of Rubens and Kurlbaum per-
fectly. From the formula above, Planck also obtained
the entropy of an oscillator to be

S—lEllE EIE 36
“eUtE) MU ) m e Y
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So far what Planck had presented was only an inter-
polation formula that fitted with the experimental data
well. However, it was not clear what it meant. Planck
was conscious of this fact. He says in his Nobel Lecture:

“... However, even if the radiation formula should prove
itself to be absolutely accurate, it would still only have,
within the significance of a happily chosen interpolation
formula, a strictly limited value. For this reason, I bus-
ted myself, from then on, that is, from the day of its
establishment, with the task of elucidating a true phys-
ical character for the formula, and this problem led me
automatically to a consideration of the connection be-
tween entropy and probability, that is, Boltzmann’s trend
of ideas; until after some weeks of the most strenuous
work of my life, light came into the darkness, and a new
undreamed-of perspective opened up before me.”

As is evident from above, Planck now worked very hard
to get a physical interpretation of his formula. For this
he employed Boltzmann’s approach to obtain entropy of
an oscillator. According to Boltzmann, entropy S of a
system is related to the number of ways €2 that a system
could have a given energy FE as follows:

S = knQ. (37)

Further when a system is in equilibrium, the correspond-
ing entropy achieves its maximum value. Maximizing
entropy of a system gives probability P(E), that a sys-
tem at temperature 7 has energy £, to be

P(E) o e B/ (38)

Planck calculated the entropy of an oscillator in the fol-
lowing way: He assumed that given total energy Fy was
divided among N oscillators so that the average energy
is £. Further for purposes of counting, let the energy
Exn be made up of small elements of energy  so that
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Figure 7. Distribution of P
elements (o) among N os-
cillators (separated by |).

the total number of such elements is P. Thus

N:@ and P:@. (39)
E €

The number of ways that this system could have energy
E is equal to the number of ways the P elements could
be distributed among the N oscillators. This is shown in
Figure 7 where elements are denoted by filled circles and
oscillators by rectangular boxes separated by a vertical
bar which are (N — 1) in number.

To count the number of ways the filled circles in the fig-
ure above could be distributed in the N boxes, we can
count the number of ways the circles and the bars to-
gether can be arranged. Each one of these arrangements
would create N boxes and certain number of circles in
them. This gives (N 4+ P — 1)! arrangements. However
since all the elements are equivalent and so are the bars,
their permutation among each other does not create any
new arrangement. Thus the number obtained above is
larger by this factor. Therefore the correct number of
distinguishable ways that P elements can be distributed
among N oscillators is given as

(N +P—1)

Q=" 7
(N —1)IP!

(40)

Using Stirling’s formula for large numbers of N and P,
this can be approximated as

(N + P>(N+P)

Q= "—y~pr

(41)

Thus entropy per oscillator is given as

1 B EN E E
S——kan—k[<1+—>ln<1+—>——ln—]
N 15

9 9 9
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This has exactly the same form as equation (36). It is
therefore tempting here to compare the two expressions
and conclude that each energy element e cannot be taken
to be arbitrarily small but must equal gr. Similarly a
in equation (36) should be equal to the Boltzmann con-
stant k. However, Planck applied a different argument.
Combining equations (23) and (25), he first writes

E(v)=v¢ (Z) : (43)

which is then inverted to get

faE) b w

However, 7 = (g—g)v. Thus using equation (44) above

sa(B(E) = s-r(E) @

Thus entropy of an oscillator is a function of the ratio
% of its average energy E and its frequency v. This im-
mediately implies that ¢ = hr, where h is a constant.
As pointed out above, this means that for proper ac-
counting of black-body radiation, the energy element is
not just a convenient counting tool but has a definite
value, a quantum of energy, for a given frequency. One
can now work backwards from this expression of the en-
tropy to get the average energy FE(v) of the oscillator.
It comes out to be

gives

hv
When combined with equation (25) it gives
8rhv® 1
u(v) = = (47)

3 /KT _q

Using Stefan—Boltzmann constant o and the Wien’s con-
stant b (equation 24), Planck obtained the values of h

For proper accounting

of black-body

radiation, the energy
element is not just a
convenient counting
tool but has a definite
value, a quantum of

energy, for a given
frequency.
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At the time when

Planck obtained the
value of Boltzmann'’s

constant from the
radiation formula,
there was no other
way that it could be
obtained.

and k to be

h = 6.55 x 10727 erg.sec and k = 1.346 x 107'% erg/deg.

(48)
Planck presented this work in a paper titled ‘On energy
distribution law in the normal spectrum’ at a meeting
of the German Physical Society on December 14, 1900,
which is now regarded as the birthday of Quantum The-
ory.

At the time when Planck obtained the value of Boltz-
mann’s constant from the radiation formula, there was
no other way that it could be obtained. In fact af-
ter getting the value of k, Planck calculated the Avo-
gadro’s number N from the gas constant R and elec-
tronic charge e from the Faraday constant F' as given
below:
R 23
Np = = 6.175 x 10*° per mole and

F
e =— =469 x 107 esu. (49)
Na

The following is an excerpt from Planck’s Nobel Lecture
on the calculation of e:

“At the time when I carried out the corresponding cal-
culation from the radiation law, an exact proof of the
number obtained was quite impossible, and not much
more could be done than to determine the order of mag-
nitude which was admissible. It was shortly afterward
that E Rutherford and H Geiger succeeded in determin-
ing, by direct counting of the alpha particles, the value
of the electrical elementary charge, which they found to
be 4.65x 10 esu; and the agreement of this figure with
the number calculated by me, 4.69x 10 %esu, could be
taken as a decisive confirmation of the usefulness of my
theory.”

This concludes our description of Planck’s work. We end
it by quoting from the Nobel Prize presentation speech
that sums up Planck’s contribution nicely:

158

W RESONANCE | February 2008



GENERAL | ARTICLE

“Planck’s radiation theory is, in truth, the most signifi-
cant lodestar for modern physical research, and it seems
that it will be a long time before the treasures will be ex-
hausted which have been unearthed as a result of Planck’s
genius”.

After Planck introduced the concept of quantum of en-
ergy as discussed above, it was examined critically for
its logical consistency and for the method of calculat-
ing entropy that Planck applied. Einstein in particular
questioned these aspects of Planck’s theory and in his
attempt to find answers to these questions, he made
revolutionary contributions to the theory of quanta and
provided a solid footing to this new concept. In the
following section, we discuss his contributions.

Einstein and the Theory of Quanta: Are Quanta
Real?

As pointed out above, Planck had introduced the en-
tropy of an oscillator by taking the logarithm of the
number of possible states. On the other hand Boltz-
mann’s procedure really meant that when in equilib-
rium, the number of oscillators and their average en-
ergy be calculated by maximizing the entropy. When
Einstein studied Planck’s work he had precisely this ob-
jection to Planck’s analysis. In hindsight, we can say
that Planck got the correct answer because he counted
the number of states (equation 40) for indistinguishable
particles properly to match the expression for entropy
(equation 36) of an oscillator that he already had. Us-
ing the same counting procedure S N Bose later showed
how the radiation density formula indeed follows when
entropy is maximized.

Einstein had another objection to Planck’s analysis: Ac-
cording to him a logical inconsistency of Planck’s the-
ory was that whereas the oscillators are assumed to have
quantized energy levels (a new concept), classical results

Planck had
introduced the
entropy of an
oscillator by taking
the logarithm of the
number of possible
states.
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Planck concluded
from his investigations
that oscillators must
have energy in units
of energy elements
e=hv.

A logical
inconsistency of
Planck’s theory was
that whereas the
oscillators are
assumed to have
quantized energy
levels (a new
concept), classical
results are used to
work out their rate of
radiation.

are used to work out their rate of radiation. We now dis-
cuss how Einstein resolved these.

To find the average energy of an oscillator by apply-
ing Boltzmann’s procedure, we first need the probabil-
ity that the system has certain energy. If an oscillator
can have energy only in units of hr, then the possible
energies that it can have are nhv (n =0, 1, 2,---). The
probability that it has energy nhv is given by Boltzmann
to be proportional to e /KT Thus the average energy
of an oscillator will be

—nhv /KT
%:nhu e h

Ev) = S e nhv/RT ghu/kT _ | (50)

This is the same expression (equation 46) that is ob-
tained by Planck. The difference is that whereas Planck
concluded from his investigations that oscillators must
have energy in units of energy elements ¢ = hv, here
at the outset, it is assumed that oscillators can take
energies only in certain quanta and then, Boltzmann’s
procedure is applied to find the average energy.

On the logical inconsistency Einstein had the following
to say (A Einstein, Annalen der Physik, Vol.17, p.132,
1905), English translation A B Arons and M B Peppard,
Am. J. Phys., Vol.33, p.367, 1965):

“It should be kept in mind that optical observations re-
fer to wvalues averaged over time and not to instanta-
neous values. Despite the complete experimental verifi-
cation of the theory of diffraction, reflection, refraction,
dispersion and so on, it is conceivable that a theory of
light operating with continuous three-dimensional func-
tions will lead to conflicts with experience if it is applied
to the phenomena of light generation and conversion”.

He then goes on to show that light with low energy den-
sity can be thought of as a collection of particles each
with energy proportional to the frequency of light v. He

160
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does this by showing that if the volume of radiation is
changed without changing its energy, the associated en-
tropy change is similar to that of an ideal gas. As such
the radiation can then be thought of as a collection of
particles of light. The restriction to low density comes
from the use of Wien’s formula, which is exact for low
density radiation, in the analysis. We now present Ein-
stein’s analysis.

Consider the spectral density ¢(v) (per unit volume) of
the entropy S of radiation in volume Vj so that

S = VO/¢>(1/)d1/. (51)

Now
dsS 1 8_(1) B

1

— === =—.
dE T ou T

Next write Wien’s formula (equation 24) as u(v) =

Eggr—ghe,li’%, invert it to get 7 and use equation (48) to

write

(52)

9 k. Srh

= 53
ou  hv S (53)
This is easily integrated to get
ku e
= (ln—u-1 54
?= ( Y 8rh? ) ’ (54

Consider now the total radiation in the spectral range
Av contained in volume Vj. Its energy E will be given
as E = Vou(v)Av. Thus using equation (51) the total
entropy of this radiation is

So = Vod(W) Ay = =22 (I — ¢
0 0p(v)Av n87rh1/3V0A1/

kE Ec3
hv

- 1) . (55)

Now suppose that the volume of radiation is changed
(say cavity expanded) to V keeping its total energy E
the same, and in the process the entropy of radiation be-
tween frequencies v and v + Av changes to S. Then the
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Change in the
entropy of low
density radiation of

constant total energy

upon change of it's
volume is similar to
the change in the
entropy of an ideal
gas.

Einstein showed that

light could be
considered as a

collection of quanta of

energy hv each.

change (S — Sp) can be easily calculated from equation
(51) and comes out to be

S — S =-——In—. (56)

Compare this with the change in entropy of N ideal gas
molecules undergoing exactly the same process. The
change in their entropy is given as

S —Sy=kN In K (57)
0

A comparison of equations (56) and (57) shows that the
radiation contained between frequencies v and v + Av
can be considered as a collection of % number of parti-
cles. Since the total energy is F, this implies that energy
of each particle is hv. This analysis shows that radia-
tion of frequency v can be considered as consisting of
particles of energy hv each. Thus according to Einstein
(A Einstein, Annalen der Physik Vol.17, p.132, 1905).

“In accordance with the assumption to be considered here,
the energy of light ray spreading out from a point source
15 not continuously distributed over an increasing space
but consists of a finite number of energy quanta which
are localized at points in space, which move without di-
viding, and which can only be produced and absorbed as
complete units”.

Having shown theoretically that light could be consid-
ered as a collection of quanta of energy hr each, Einstein
next considered three phenomena, namely,

(i) Stokes” Rule: Frequency of photoluminescent emis-
sion is less than that of the incident light,

(ii) The Photoelectric Effect: Energies of photoelectrons
are independent of the intensity of the incident light, and

(iii) Photoionization of Gases: A minimum frequency of
light is required to ionize a gas,
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which could not be explained using classical theory of
radiation. He applied the new idea of energy quanta
of radiation to successfully explain all three of them.
The explanation gave solid experimental support to the
concept of quanta of radiation.

The story of Einstein’s contribution to the concept of
quantization does not end here. He further generalized
it to state that not only electromagnetic oscillators but
mechanical ones also have energy in units of hv. He
used this to explain the fact that specific heat of solids
goes to zero with temperature going to zero. The exper-
imental situation in 1900 in connection with the specific
heat of solids was as follows. Dulong—Petit law stated
that specific heat of solids is 3R, where R is the gas
constant, per mole. However, it was seen experimen-
tally that some materials, particularly light elements,
did not obey Dulong—Petit law and their heat capac-
ities were smaller than 3R. For some other elements,
as the temperature was increased, the specific heat rose
rapidly and attained the value of 3R at high tempera-
tures. Einstein asked (A Einstein, Annalen der Physik,
Vol.22, p.180, 1907):

“. .. for the following question forces itself upon us. If the
elementary oscillators that are used in the theory of the
enerqy exchange between radiation and matter cannot
be interpreted in the sense of the present kinetic molec-
ular theory, must we not also modify the theory for the
other oscillators that are used in the molecular theory of
heat?”

Thus Einstein proposed that even the energy of an atom
in a solid, vibrating with frequency v will be given by
equation (46) for each degree of freedom. Thus the en-
ergy of N such atoms will be

hv

Einstein’s contribution
to the concept of
guantization does not
end here. He further
generalized it to state
that not only
electromagnetic
oscillators but
mechanical ones also
have energy in units of
hv.
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‘... This remarkable
theory, for which

Planck received the

Nobel Prize for
Physics in 1918,

suffered from a variety

of drawbacks and
about the middle of

the first decade of this
century it reached a

kind of impasse.”

From the presentation
speech of the Nobel

Prize to Einstein

and the corresponding specific heat

du ho\?  eM/kT
— =3R|(— | —. (59)
dT KT ) (ehv/RT _ 1)

This expression explains that for light elements, which
have relatively larger frequencies, the specific heat should
be smaller than 3R. As the temperature becomes higher,
the specific heat should attain the value 3R given by Du-
long and Petit law. Interestingly, the expression above
predicted that the specific heat would vanish as T' — 0.
This was confirmed experimentally by Nernst.

We end this section with a quote from the presentation
speech of the Nobel Prize to Einstein:

“A third group of studies, for which in particular Ein-
stein has received the Nobel Prize, falls within the do-
main of the quantum theory founded by Planck in 1900.
This theory asserts that radiant energy consists of indi-
vidual particles, termed “quanta”, approximately in the
same way as matter is made up of particles, i.e. atoms.
This remarkable theory, for which Planck received the
Nobel Prize for Physics in 1918, suffered from a variety
of drawbacks and about the middle of the first decade of
this century it reached a kind of impasse. Then FEin-
stein came forward with his work on specific heat and
the photoelectric effect”.

Concluding Remarks

In this article we have covered a period in the develop-
ment of modern physics that gave us an absolutely new
concept that the energy is not exchanged in a continuous
manner but in quantized form. We started with an in-
troduction to black body and its spectrum and discussed
the pathbreaking work of Wien. This work really laid
foundations of further exploration by Planck. Taking
an approach based on the second law of thermodynam-
ics, Planck came up with an interpolation formula that
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fitted the experimental results for the black-body spec-
trum perfectly. However, Planck did not stop there but
tried to get a meaning of his formula. In this process he
was led to introduce the concept of quantum of energy.
This was a tremendous insight and a bold departure
from the set theories at that time. The theory was put
on a solid footing by Einstein who critically examined
Planck’s theory and in the process contributed signif-
icantly to establish the principal of quanta. Planck’s
thoughts about his work are reflected from a letter he
wrote on October 7, 1931 to an American colleague
R W Wood. Parts of this letter are quoted below (taken
from suggested reading [3]):

“Briefly summarized, what I did can be described as sim-
ply an act of desperation.... I had been wrestling un-
successfully for siz years (since 1894) with the problem
of equilibrium between radiation and matter and I knew
this problem was of fundamental importance to physics;
I also knew the formula that expresses the energy distri-
bution in the normal spectrum. A theoretical interpreta-
tion therefore had to be found at any cost, no matter how
high. ... This approach was opened to me by maintain-
ing the two laws of thermodynamics. For the rest, I was
ready to sacrifice every one of my previous conviction
about physical laws”.
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11 { «) “ A new scientific truth does not triumph by convincing its opponents and
making them see the light, but rather because its opponents eventually die,
| 1l and a new generation grows up that is familiar with it.”

“ For itisworkwhichisthefavourablewind that makesthe ship of human life
sail the high seas, and asfor the evaluation of the worth of thiswork, thereis
an infallible, time-honoured measure, a phrase which pronounces the final
authoritative judgement of all times: By their fruits ye shall know them” .

— Max Planck
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Appendix 1. Kirchhoff’s Law

An argument for Z—i = FE, is given here on the basis of isotropy of radiation
inside a cavity. Since the surface of a body in a hollow cavity and the walls of
the cavity form a cavity themselves, the radiation inside the new cavity is also
isotropic. Let the cavity be made of a material with emissive power ey and let
its absorption and reflection coefficients be r) and ay, respectively. Similarly let
the corresponding quantities for the material of the body be €}, 7} and a). Now
any radiation inside the cavity can be thought of as the sum of radiation reflected
from the surface of the cavity and that being emitted from it. Since radiation
is isotropic, the intensity of radiation incident from any direction is the same as
the intensity of radiation reflected in any direction. Therefore if the radiation
inside the cavity corresponds to that of a body with emissive power £, radiation
incident on a small area dA of the cavity wall (or the surface of the body inside)
per unit cross-section per unit solid angle per unit time from any direction is
proportional to F, d\ in the range d\. Radiation reflected per unit cross-section
per unit solid angle per unit time is going to be proportional to r)E) dA for the
cavity wall and 7} £\ d\ for the body surface (the constant of proportionality for
both the incident and the reflected radiation is the same and depends on the
angle of incidence or reflection, see Appendix 2). In particular let us look at the
direction perpendicular to dA. The total radiation going out from the wall in that
direction is the sum (ey d\ + ryE, d)) of the reflected and the emitted radiation
per unit cross-section per unit solid angle per unit time. But this is precisely the
radiation existing inside the cavity. Therefore

ext+ ik = Ey,
which in turn gives

GA:E)\(l—T)\>:E)\CL)\ {GA+TA:1}
= Z—i = FE)

Exactly the same arguments apply for radiation coming from the surface of the
body. Thus, Z—% = FE,.
A

a

This implies that i = Z—i = E).

>

E must therefore be a universal constant. Now following the arguments in the
main text, it can be shown to be independent of the geometry of a cavity and
equal to the emissive power of a black body.
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Appendix 2. Energy Density and Pressure of Electromagnetic
Radiation in a Cavity

Consider a plane electromagnetic wave traveling in the z-direction as shown in
Figure A2.1.

The electric field of the wave is in y-direction and is given as F(x,t) = Ege!k#=«1),
The electromagnetic wave contains energy and it also transports it in the direction
of travel. The wave also carries momentum in the same direction. If the average
energy content of the wave is u, the energy carried by it across a unit area in
unit time S, and the momentum it carries across a unit area in unit time p, then
these quantities are given in terms of Ey as (here ¢ is the speed of light)

1

U = §6OE§,
S = cu, (A2.1)
S
p=—=u
c

The energy carried across a unit area in unit time is known as the intensity of
radiation. Further, because of the momentum carried by the wave, if a plane
wave falls on a perfectly absorbing plate of area A, it will apply a force on it and
its value would be equal to uA, i.e., the total energy passing through the area.
To visualize these concepts, imagine a fluid of density p flowing with speed v in
the x-direction. The fluid then has energy and carries energy and momentum
across a given area. The kinetic energy per unit volume of the fluid is u = %p v2,
the energy and momentum carried across a unit area per unit time are S = %pv?’
and p = pv?, respectively.

; Figure A2.1. A plane wave

' f S traveling in the positive x-

= E direction. The energy con-

e o tent per unit volume is u
7 and energy passing per unit

area unit time is S.
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Figure A2.2. Because of the isotropic nature of radiation inside a cavity, the energy incident on the
surface or radiating out of it looks exactly the same at any point on the surface.

Now in a cavity the radiation is isotropic. Thus at any point in it the energy
density is the same and the intensity of radiation is identical in all directions.
We now wish to find the average energy per unit area coming out of a small hole
made on the walls of the cavity. We also want to derive the pressure on the walls
of the cavity that the radiation applies. These quantities are important in the
study of black-body radiation.

Consider a small part of the wall of a black body cavity as shown in Figure A2.2.

Because of the isotropy of radiation inside the cavity, the intensity of radiation
looks exactly the same from any point on the wall. Similarly intensity of radiation
coming out of the surface has the same value in all directions. This is made
mathematically more precise as follows: Let the total energy, radiating in the full
solid angle of 27, coming out of a small portion dA be P Joules per unit area per
unit time. Then the energy dF going into solid angle df2 at an angle 6 from the
normal to the surface (Figure A2.3) is given by the relation

P
dE = 2—cos9dA dQ2 (A2.2)
™

In the equation above, the factor of cos 6 arises because the intensity of radiation
in all directions is the same and is given by the energy divided by the area normal
to the direction; the latter is dAcos 0 (see Figure A2.3).

Figure A2.3. Radiation energy being normal to
emitted from a small area dA of a the surface
body in solid angle dQ at an angle 6
from the normal to the surface. The
projection of area dA in perpendicu-
lar to the direction of emission is
dAcos6.
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Figure A2.4. Alarge spheri-
cal cavity of radius R.

= Length=2Rcosé

In a cavity, P would depend on the temperature of the cavity. We are now ready
to find the energy density of radiation inside the cavity and also the pressure due
to it on the walls of the cavity. We will also find the relation between the energy
density and the energy that comes out of a hole made in the cavity.

Take a large cavity of radius R shown in Figure A2.4. Let its walls continuously
emit energy P per unit area per unit time. When the radiation hits the surface,
it gets totally absorbed so that the total energy in the cavity remains the same.
We calculate the energy contained in the cavity and divide it by its volume to
find the energy density.

For this take a small area dA on its surface. The radiation that comes out of
it into the solid angle df2 at an angle # reaches the wall of the cavity in time
At = MLCOSQ, where ¢ is the speed of light. Since energy going into this solid
angle per unit time is given by equation A2.2, the total energy filling the small
volume between two rays, shown in Figure A2.4, is given by

2R cosf
. )

P
dE At = 2—cos€dA dQ2 (A2.3)
™

Thus the energy AFE that fills the entire cavity due to radiation from the area

dA is given by integrating the expression above over § = 0 to § = 7 and comes
out to be 5P R
AE = 3 dA. (A2.4)
c

Since the total surface area of the cavity that is emitting radiation is 47 R?, the
total energy E filling the cavity due to radiation from all around is given by

B 87 P R?
- 3¢
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Figure A2.5. Radiation inci-
dent on small area element
dA from a portion of the
wall of a cavity.

" Area= 4R2co20.d2

which then gives the energy density to be

u=—. (A2.6)
c
We now calculate the pressure due to this radiation. For this, we again consider
the cavity above and let the radiation from all over the cavity fall on the small
area at its bottom and calculate the radiation force on this area (Figure A2.5).
Dividing this force by the area gives the pressure. The calculation is slightly more
involved than the previous calculation of the energy density.

As shown in the figure the area from which we consider the incident radiation is

4R2 cos?0dQ 2 . . dAcosf __ dA
equal to === = 4R"cos § dQ) and it makes a solid angle {75255 = TRz oamg

on the area dA. Thus the radiation energy dE going to area element dA is

P dA
dE = 4R?cosdQ x — cosf X —
27 4R2cos
P
= —cosfdQdA. (A2.7)
2m
The corresponding intensity dJS is
dE P
dS = —— = —dQ. A28
dA cos 0 27w ( )

This intensity causes a momentum transfer of amount % per unit area across the
projection dA cosf of the area element dA normal to the direction of radiation.
Thus the total momentum transfer to the area dA per unit time is %d@ dA cosf.
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Its component normal to the area dA gives the force P%Sjedﬁ dA on this area.

Thus the pressure due to the incident radiation is

9:7r
1 P cos?0
= — —dQdA
PL= 4 /

27 c

P
3¢
This is pressure only due to the incident radiation. The radiation leaving the
area dA also adds to this pressure by Newton’s third law. Let us now calculate
this pressure po and get the total pressure by adding p; and ps. The total energy
leaving dA per unit time into a solid angle d§2 at angle 6 is

(A2.9)

P
dE = 2—COSHdA ds, (A2.10)
™

and it carries with it a total momentum of % per unit time. By momentum
conservation the same amount of momentum is transferred to the area element
dA in the direction making an angle 6§ normal to this area. The pressure py due
to radiation emitted from dA is therefore

0=m/2

P
po = dA/—cos@— ch/ cos? 0. dQ

A2.11
=35 ( )
Thus the total pressure due to radiation inside the cavity is p; + ps = == and is
written in terms of the energy density u as

p= % (A2.12)

In a similar manner the total radiation coming out of the area element dA per
unit time is obtained by integrating expression in equation (A2.10) and gives the
result gdA. Thus radiation R coming out the hole per unit time per unit area
can be written in terms of the energy density inside as

R= iu. (A2.13)
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