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Theorema Aureum — 1

Shivam Kumar

Are there perfect squares which on division by
7 leave remainder 37 Are there perfect squares
which on division by 3 leave remainder 77 (A
“remainder of 7” on division by 3 is the same
as a remainder of 1.) The answers: ‘NO’ and
‘YES’, respectively. These facts are stated by
3 is a quadratic
non-residue modulo 7; 7 is a quadratic residue
modulo 3. The notion of quadratic residue is far
reaching, and the key theorem here is the Law

number theorists as follows:

of Quadratic Reciprocity, first stated by Euler
in 1783, but without proof, and first proved by
Gauss, in 1796. The theorem is easy to state but
is mysterious, as it reveals a connection between
two questions that appear unconnected. Let p,
q be distinct odd primes; then the questions are:
“Is p a quadratic residue modulo ¢?” and “Is q a
quadratic residue modulo p?” Gauss had a high
regard for this result and called it Theorema Au-
reum, the Golden Theorem. Though it has been
proved in many different ways, it retains its mys-
tery. In this two part article we give three proofs
of the theorem. The first one, described in this

part, is based on group theory.
1. Historical Setting

Historically, one of the important reasons for studying
algebra has been to find good ways of solving polyno-
mial equations. Linear and quadratic equations were
mastered long back, and attempts to solve the cubic
equation brought mathematicians into contact for the
first time with the strange world of complex numbers.
By the seventeenth century, cubic equations and quartic
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' Ruffini, Abel and Galois
showed, independently, that
equations of degree 5 and higher
cannot be solved in the same
way that we solve equations of
degree less than 5, i.e., using
methods of school algebra such
as ‘completing the square’ and
SO on.

equations had been mastered, and attention then turned
to the quintic (degree 5) equation. The resolution of
this problem (in the negative!, as it turned out) is an
extremely important stage in the development of alge-
bra, for it brought forth group theory, the theory of
finite fields, Galois theory, and most importantly, the
axiomatic approach in algebra.

In the last decade of the eighteenth century, Carl Gauss
opened the field wide by expanding the domain over
which we may seek solutions to equations. He intro-
duced the notion of a congruence among integers, de-
noted by the symbol ‘=". Let a, b and m be integers,
with m # 0; we call m the modulus, and say that «
and b are congruent modulo m if they leave the same
remainder on division by m; we write this compactly as
a = b (mod m); eg., 17 = 12 (mod 5) and 37 = 13
(mod 8). The word ‘congruence’ is used here in much
the same way as it is in geometry, where we say that
two shapes are congruent to each other if they ‘look the
same’. The idea is that when the modulus is m, then the
universe of available numbers is (in effect) the finite set
{0,1,2,...,m — 1}, and the numbers 1, m + 1, 2m + 1,
3m+1, ... ‘look’ the same in this world, as do the num-
bers 2, m + 2, 2m + 2, 3m + 2, ... (we may picture the
numbers as ‘cycling back’ to 0 after reaching m — 1).
The algebra of congruences is easy to construct, as the
congruence symbol ‘=" obeys practically all the rules of
the more familiar equality symbol, ‘=". Only division
can pose some difficulty, and even this is not the case
if the modulus is a prime number; e.g., if m = 7, then
2 x4 =1, so 2 and 4 may be called reciprocals of each
other, and this shows how division can be done; e.g.,
3/4=3x2=6 (mod 7).

Once this idea has been conceived, the possibility of solv-
ing equations over these finite domains immediately sug-
gests itself. For example, the linear equation 2x + 3 = 4
(mod 7) has the unique solution z = 4 (mod 7), and
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the quadratic equation z? + 2z = 3 (mod 7) has two
solutions # = 1 (mod 7) and z = 4 (mod 7). On the
other hand, the equation z? + 2z = 4 (mod 7) has no
solutions. The intricacy of algebra in this finite domain
soon emerges, posing numerous questions of great ap-
peal to a mathematician.

For studying further the algebra of congruences, the
reader may consult any book on number theory; e.g.,
the well-known one by Hardy and Wright [1].

2. Quadratic Reciprocity

Quadratic reciprocity concerns congruences of the kind
22 = a (mod p), where a is an integer and p is a prime
number, and x is an integer to be found. Depending on
the values of a and p, this congruence may or may not
have any solutions. For example, the congruences 2> =

(mod 3) and 22 =5 (mod 7) have no solutions, as may
be verified by simply computing the squares of the first
few positive integers and checking their residues modulo
3 and modulo 7, respectively. On the other hand, the
congruences r> = 1 (mod 3) and 22 = 2 (mod 7) do
possess solutions; the former congruence has solutions

r = %1 (mod 3), the latter one = £3 (mod 7).

The more general quadratic congruence az? 4 bz + ¢ =
0 (mod m), where a, b, ¢, m are integers and = is an
integer to be found, may always be reduced to a finite
set of congruences of the type 22 = a (mod p). But this
simple looking congruence possesses vast depths! So the
study of these congruences takes care of all quadratic
congruences.

Let p denote an odd prime number, and let a be any inte-
ger not divisible by p. If the congruence 22 = a (mod p)
possesses a solution, then a is called a Quadratic Residue
modulo p; if not, it is a Quadratic Non-Residue modulo
p. For example, in the set {1,2,3,...,10}, the quadratic
residues modulo 11 are 1, 3, 4, 5, 9 and the quadratic
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Box 1. Quadratic Residues, Cryptography, Coin Tossing, Primality Testing

Studying quadratic residues modulo a prime is not only a natural problem in number
theory, it also proves extremely useful in several other places like cryptography. Here is
one way of seeing the connection. We stated in the article that the quadratic residues
modulo 11 are 1, 3, 4, 5, 9 and the quadratic non-residues are 2, 6, 7,8, 10. So the
numbers from 1 to 10 have been placed in two sets, but they give the impression of being
randomly distributed. This fact may be made use of in devising codes and in “tossing a
coin over a telephone” (i.e., tossing a coin electronically) and conveying the result in a
believable and verifiable way.

In primality testing, there is an efficient test called the Miller—Rabin primality test which
is not known to be deterministic, but it can be proved to be deterministic if one could
guarantee the existence of ‘small’ quadratic non-residues modulo any prime. Such a
guarantee can be given if one assumes one of the deepest open problems of mathematics
— the Generalized Riemann Hypothesis. We describe the Miller-Rabin test in Boz 2.

non-residues are 2, 6, 7,8, 10. Among the many attrac-
tive properties of these sets of numbers are the follow-
ing: (I) There are as many quadratic residues modulo
p as non-residues modulo p. (II) The product of two
quadratic residues or two non-residues modulo p is a
quadratic residue modulo p; e.g., 4 x5=90r6 x 8 =4
for the case p = 11. (III) The product of a quadratic
residue and a non-residue modulo p is a quadratic non-
residue modulo p; e.g., 3 x 7= 10.

Properties (II), (III) remind us of the arithmetical rela-
tions ‘plus x plus = plus’, ‘minus X minus = plus’ and
‘plus X minus = minus’; and indeed, there is a group
theoretic connection.

A convenient way of denoting the quadratic character of
a modulo p is through the use of the following symbol
first introduced by Legendre:

p

a +1, if a is a quadratic residue modulo p,
—1, if a is a quadratic non-residue modulo p.

For example, (%) = +1, whereas (%) = —1. Ifais a

multiple of p, we write (%) = 0.
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An easily proved (and most convenient) property of
the Legendre symbol is its multiplicativity: we have

<%> . <§> = <“7f’> for all integers a, b, and all primes p.

(This is another way of expressing properties (II), (III)
given above.)

Is there a quick way of computing <%> for a given integer

a and a prime number p? Following the remark made
above, we may restrict our attention to the cases when
the numerator a is prime; e.g., one may ask for the value

of (Z) or (355). In the resolution of this question lies

a startling fact connecting the values of <§> and <%>

for pairs of distinct odd primes p and ¢. This connec-
tion was first found empirically by Euler and Legendre,
and proved rigorously by Gauss, but the seeds of its dis-
covery lie in discoveries made much earlier by Fermat.
Today this connection is called Quadratic Reciprocity.
The famous law of quadratic reciprocity may thus be
said to have had more than one birth!

3. First Movement: Fermat, circa 1640; Euler,
circa 1749

Fermat’s discovery is the following, which he expressed
in a letter to Mersenne in 1540:

Every prime number which surpasses by one
a multiple of four is composed of two
squares . . . .

That is, a prime number p = 1 (mod 4) is a sum of two
squares. In a letter to Pascal in 1654, he also wrote? that
a prime number p = 1 (mod 3) is of the form z? + 3y,
and that a prime number p = 1 or 3 (mod 8) is of the
form 22 4 2y

The prolific Leonhard Euler learnt of many of Fermat’s
assertions through his correspondence with Goldbach,

2 Fermat often mentioned re-
sults without proof, in his letters
and other writings. Considering
the story behind Fermat's Last
Theorem, we should be thankful
for this habit of his!
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and it became a life-long passion for him to prove these
assertions. (And, being Euler, he succeeded most of the
time.)

Euler’s proof of Fermat’s statement that a prime number
p =1 (mod 4) is a sum of two squares had two steps:

e A descent step to show that if p is a prime number
which divides a number of the form z? + y? with
x,y coprime, then p is itself a sum of two squares;

e A reciprocity step to show that a prime number of
the form p = 1 (mod 4) does divide a number of
the form 22 + y? with 2,y coprime.

Using the same method, Euler also proved the other two
assertions of Fermat (given above). He spent a number
of years in proving the reciprocity steps. Indeed, the
reason we have called it the ‘reciprocity’ step is because,
in modern terminology, the two reciprocity statements:

o A prime p divides x* + y* for some (x,y) = 1 if
and only if p =1 mod 4,

o A prime p divides x* + 2y* for some (x,y) = 1 if
and only if p=1 or 3 mod 8,

are equivalent, respectively, to the assertions

(‘71) _ (1), (;) _ (C1)us

After discovering several similar such results, for exam-
ple, that

(Z) = 1 ifand only if p = +1,4+3,+£9 (mod 28),
p

Euler finally made the following conjecture around 1749:

Euler’s Conjgecture. Let p, q denote distinct odd
primes; then (%) =1 if and only if p = £a? (mod 4q)

for some odd integer .
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It is easy to see that this conjecture is equivalent to the
usual formulation of the

Law of Quadratic Reciprocity (QRL). Let p, q
denote distinct odd primes; then

(g) : (%) — (—1)P-D-D/A

Equwvalently: if one or both of p,q are of the form 1
(mod 4), then <§> = <%>; and if p,q are both of the

form 3 (mod 4), then <§> =— <3>.

p

4. Second Movement: Gauss, circa 1795

The second independent birth of the reciprocity law oc-
curred in Gauss’s work in March 1795; he was not yet
18 then! In April 1796 Gauss found the first complete
proof of the quadratic reciprocity law®. Apparently, he
became aware of Euler’s and Legendre’s work only later.
Following his first proof, Gauss found a number of other
proofs. The second proof involves the deep genus theory
of binary quadratic forms which he himself pioneered.
One reason he gave many proofs may be that he con-
sidered it a very fundamental result — he called it the
theorema aureum (the golden theorem). Several people
have given proofs subsequently, and a tongue-in-cheek
title of a paper by Gerstenhaber suggests his proof to be
the 152nd! However, many of these proofs are similar to
others. In this two-part article I single out three proofs
which use different ideas and which I enjoyed learning
about. They are all pretty and not too well known; none
of them appears in any textbook.

We resisted the temptation to include the elegant geo-
metric proof given by Gauss’s phenomenal but tragically
short-lived student G Eisenstein?, as it appears in one
form in the famous book by Hardy and Wright [1]. It
must be remarked that not all the beautiful features of
Eisenstein’s proof seem to have been well understood as

3 Later Gauss wrote, “Forawhole
year this theorem tormented me
and absorbed my greatest ef-
forts ...”.

4 Eisenstein was very pleased
with his own proof and wrote,
“How lucky good Euler would
have considered himself, had
he possessed these lines about
seventy years ago.”
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pointed out by Laubenbacher and Pengelley [2] in their
engaging article in Mathematical Intelligencer.

Remark. There have been various generalizations of
quadratic reciprocity; we have cubic reciprocity (Gauss
and Eisenstein), quartic reciprocity (Gauss), general p-
adic reciprocity (Eisenstein), Artin’s general abelian reci-
procity law, the Hilbert—Takagi class field theory, and
its nonabelian generalizations (in the ‘Langlands pro-
gram’), and so on. We shall not go into any of these in
this article.

4.1 Notation

Throughout, p, ¢ denote distinct odd primes; x, y denote
integers; m denotes an arbitrary modulus, not necessar-
ily prime; Z/mZ denotes the set {0,1,2,...,m — 1},
which forms a ring under addition and multiplication
modulo m; (Z/pZ)" denotes the set of non-zero elements
in Z/pZ, i.e., the set {1,2,...,p — 1}. Note that Z/pZ
forms a field under addition and multiplication mod-
ulo p, and (Z/pZ)* forms a group under multiplication
modulo p.

4.2 FEuler’s Criterion

Before proceeding with the proofs, we recall an impor-
tant criterion used to check quadratic reciprocity. First
note that the congruence

($(p_1)/2>2 =1 (mod p)

implies that z®~Y/2 = 41 for any = € Z/pZ. But if
r = y?, then

cPV/2 — Pt =1 (mod p),

so the quadratic residues are all roots of the polynomial
t®=1/2 _ 1 Since this polynomial cannot have more
than 1(p — 1) roots in the field Z/pZ, we conclude that
its roots are exactly the quadratic residues. This yields
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W RESONANCE | September 2007



GENERAL | ARTICLE

Box 2. The Miller-Rabin Primality test
This is in wide usage especially for the RSA cryptosystem.

Let n be an odd prime; write n—1 = r-2° with r odd. For (a,n) = 1, we have a2 7T = 41
mod n. Thus, a satisfies at least one of the following conditions:

e a" =1 mod n;

e a2" = 1 for some 0 <i< s.
A composite n which satisfies this last-mentioned property is called a strong pseudoprime
to the base a. One also calls such a base a strong liar for n. When n is not a strong
pseudoprime to some base a (that is, if each of the s+ 1 congruences fails), then evidently
n is composite, and a is known as a strong witness to the compositeness of n.

For example, the Carmichael number 561 has 2 as a strong witness. This is so because
560 = 16 x 35 and 23% = 263,22%3% = 166, and 2**3% = 67 mod 561. Also 28735 =1
mod 561.

The Miller-Rabin test starts by picking a random a < n — 1 and checking whether a”
(mod n) is +£1. If it is, then n “passes the test” and we conclude that n is a “probable
prime”; we then move to the next a. If it is not +1, we keep squaring (up to s — 1 times)
and checking until we reach —1. If it does, then again n passes the test and is a probable
prime; we move to the next a. If —1 is never reached, then n must be composite.

It turns out that at the most % of the numbers 1, 2, ..., n — 1 can be strong liars
for a composite n. Thus, after d iterations, the probability that the Miller—-Rabin test
concludes primality of a composite n is at the most ﬁ; this is the probability of a wrong
conclusion. It may be shown that the Miller-Rabin test is deterministic if we assume the

Generalized Riemann hypothesis or GRH.

A consequence of GRH is that for any prime p > 3, the least quadratic nonresidue is
strictly less than 2(logp)?. So if the Miller-Rabin test is performed for all a less than
2(logn)?, then it finds a strong witness for n. This makes it a deterministic test.

the criterion due to Euler:

<£> = +P"Y/2 (mod p).

p

Here is an example of the usage of the criterion: we shall
compute (=). The criterion tells us that (&) = 3
(mod 29). Now, modulo 29 we have:

31=3, 32=9, 3¥3=27=-2, 3*=81=—6,
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3'=(-2)x (-6)=12, 3" =12°=144= —1.
Therefore, 3 is a quadratic non-residue modulo 29.

4.3 Two Illustrations of QRL

We give two examples of the law in action.

® p=954q=19
Here p = 1 and ¢ = 3 (mod 4), so QRL predicts
- 5 19
that (g) = (%) that is, () = (2).
This is true, as both sides are equal to 1. For

we have: 9?2 = 81 = 5 (mod 19), showing that
(&) =1; and 22 = 4 = 19 (mod 5), showing that

i
(%) =1
e p=7,q=23
Here both p = 3 and ¢ = 3 (mod 4), so QRL
predicts that (%) = — (%), that is, (%) - _ (%)

This is true; we can verify by calculation that 7 is

a quadratic non-residue modulo 23, so (%) =1;
but 23 is a quadratic residue modulo 7, for we have

32 =9=2=23 (mod 7), so (£) = -1.

5. First Proof of QRL — by Counting Cosets

We begin with a computation-based group theoretic proof
due to G Rousseau. Throughout, p, ¢ represent an arbi-
trary but given pair of distinct, odd primes.

5 i i . .
Recall the Chinese Remainder 1) 1a Janguage of abstract algebra, CRT? gives a ring
Theorem (CRT): Given any two

integers a,b, an integer x may isomorphism of Z/pqZ with 7,/ pZ.x 7] ¢Z., the map being

be found such thatx=a(modp) € (a,b) with ¢ = a (mod p), c =b (mod q).

and x= b (mod q). In the interval . ) . . .
[1, pg], there is just one such x. 11 particular, the groups of units (i.e., the invertible ele-

ments) on both sides are isomorphic to each other. Since
the units in a direct product of rings are the elements
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ISOMORPHISM OF RINGS

7/15Z 0 1 2 3 4

) 6 7

Z)3Z < ZJ5Z | (0,0) (L1 (2.2) (0.3) (LA4)

2,00  (0,1) (1,2

Z/15Z 8 9 10 11 12 13 14
Z/3Lx Z/5Z || (2,3) (0,4  (1,0) (2,1)  (0,2) (L3) (24
ISOMORPHISM OF GROUPS OF UNITS
(Z]15Z)" 1 2 1 7 8 11 13 14

Z/3L) < Z/5Z)7 | L) (2.2 (L4 (L2) (2.3)

(2,1) (1,3) (2,4

e {1,14} is a subgroup of (Z/15Z), of order 2. It may
also be written as {1, —1}.

e The corresponding subgroup of (Z/3Z)" x (Z/5Z)" is
H = {(1,1),(2,4)}. It may also be written as H =

{1,1),(=1,-1)}.

that have units in each coordinate, we have a group iso-
morphism 7 of (Z/pqZ)" with (Z/pZ)" x (Z/qZ)".

Table 1 shows the ring and group isomorphisms for the
case p = 3,q = 5.

Now consider the subgroup K = {1,—1} of (Z/pqZ)",
generated by —1; it has order 2. The isomorphism maps
it to a subgroup of order 2 of (Z/pZ)* x (Z/qZ)"; namely,
TK = H = {(1,1),(=1,—-1)}. If we evaluate and com-
pare the products of the coset representatives of K and
H, we find to our surprise that we get the reciprocity
law!

To motivate the analysis of the general case, it is worth
taking a careful look at the case p = 3,9 = 5. Let
71 (ZJ15Z)" — (Z/3Z)" x (Z/5Z)" denote the group
isomorphism shown in Table 1. Then 7 maps the sub-
group K = {1,14} of (Z/15Z)" to the subgroup 7K =
{(1,1),(2,4)} of (Z/3Z2)* x (Z/5Z)".

Table 1. Shows the corre-
spondences for the case

p=34q=5.
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In the group (Z/157Z)", the cosets of K = {1,14} are

{1,14}, {2,13}, {4,11}, {7,8}.

The quotient group here, (Z/15Z)"/ K , is isomorphic to
the cyclic group of order 4, and the product of the cosets
is the coset {4, 11}. (This is the element in the quotient
group that has order 2.)

In the group (Z/37Z)" x (Z/57Z)", the cosets of 7K =
{(1,1),(2,4)} are

{(1L,1),(2,4)}, {(2,2),(1,3)}, {(1,4),(2,1)}, {(1,2),(2,3)}.

The product of the cosets is the coset {(1,4),(2,1)}.
Observe that 7 maps the product of the cosets of K
to the product of the cosets of 7K. This was to be
expected.

The same correspondence must hold in the general case.
On probing further, we get the reciprocity law. The
details are as follows.

We consider the group Gy = (Z/pqZ)", its subgroup
K = {1,—1} of order 2, and the quotient group G1/K
which has 3(p — 1)(q — 1) elements.

Under 7, this translates into the group Go = (Z/pZ)" x
(Z/qZ)", its subgroup H = 7K = {(1,1),(=1,-1)} of
order 2, and the quotient group G3/H which has

2(p — 1)(¢ — 1) elements.

The cosets of K in G have the form {i,pg — i} where
i is coprime to pq. Since min{i,pq — i} < %pq, we can
always select a representative from each coset which is
less than %pq. It follows that the set T' given by

T = {i: 1<i<=(pg—1), ged(i,pq) =1}

DN —

is a set of distinct coset representatives of K in G =

(Z/pqZ)".
W RESONANCE | September 2007
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The cosets of H in G2 have the form {(7,j), (p—1,
q—7)}. Since min{j,q—j} < %q, we can always select a
representative from each coset whose second coordinate
is less than %q. It follows that the set S given by

1
S ={6j) : 1<i<p-lL1<j<g(¢-1)}
is a set of distinct coset representatives of H in G9 =
(Z/pZ)" x (Z/qZ)".

Note that #7 = #S = 2(p — 1)(¢ — 1) = #G/K =
#Go/H.

Next, we calculate the products of the elements of the
coset representatives S and T in the respective groups.
For the group Gy = (Z/pZ)" x (Z]qZ)", we get the prod-
uct

Sells = ((p—l)!(q_l)/27 ((%)!)p_j H. (1)

For the group Gy = (Z/pqZ)", we have, modulo p:

It = (I ) - (T o+ ) - (T 2p ) - TT2 2 (e — Dy + )

1 ¢-2¢- - 5(p—1)g

— )@=D/2 (L 1)) — 1)1e=1)/2
= (p—1) G —1)) = (p—1) (Euler’s criterion!)

7 (3o - 1) 0

<p—1>!<q-1>/2-(2> (mod p) = <—1><q—1>/2-(?> (mod p).

p

where Wilson’s theorem (the statement that (r — 1)! =
—1 (mod r) for all primes r) is needed in the last step.
In the same way, we get, working modulo g¢:

Tt = (-neve. (B) (mod ).

te’T q
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Therefore, by the CRT, 7 maps [[,.,t to

((—1><q—1>/2- (g) (1) (g))H c Cu/H.

(2)

Since i = —(¢ — i) (mod ¢), we have:

(¢ —1)! = ((‘7;—1> !)2 x (-1 (mod q).

Raising both sides to the 1(p — 1)-th power and using
Wilson’s theorem again, we get:

((q;_l)!)p_l = (C1)eD2. (L)E-DE/A (mod g).
(3)

Expression (1) for [[,.qs may therefore be simplified
(after reducing the first coordinate modulo p, and the
second coordinate modulo ¢) to

((_D(q—l)/z7 (_1>(p—1)/2 ) (_1>(p—1)(q—1)/4) H. (4

Since expressions (2) and (4) represent the same element
in Go/H, comparing them we get

(g) : (g) — (—1)P-DaD/

which is nothing but the Law of Quadratic Reciprocity!
5.1 Illustration: The Casep = 3, q = 5

Let us work through the case p = 3, ¢ = 5. We know
that 3 is not a square in Z/5Z, nor is 5 a square in Z/37Z.

3\ _ 5\ _ 3 5\ _

So, (3)=-1(3)=-1L(3)-(3) =1

Let us check this against the above computations. Using
the same symbols, we have: G = (Z/3Z)" x (Z/5Z)",

38
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((1,1),(1,2),(2,1),(2,2)}, T = {1,2,4,7}, and:

I1s =

(4,4)H = (1,-1) H,

s
gt = (-1 (g) (mod 3) = (g) (mod 3),
gt = (-1 (g) (mod 5) = — (g) (mod 5).

Comparing the two results we see that

5 3\
3 5)
that is, (g) . (g) = 1, in agreement with what was stated

at the beginning.

1-(=1),

More to come In Part 2 we present two more

proofs of the QRL — one based on linear algebra, and
the other on the notion of field extensions. The latter
proof is rather more advanced than the first two.
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