Think It Over

This section of *Resonance* presents thought-provoking questions, and discusses answers a few months later. Readers are invited to send new questions, solutions to old ones and comments, to 'Think It Over', *Resonance*, Indian Academy of Sciences, Bangalore 560 080. Items illustrating ideas and concepts will generally be chosen.

This problem was posed by Shailesh A Shirali
Principal
Amber Valley Residential School
K M Road Mugthihalli
Chickmagalur 577 101, India.
Email: shailesh_shirali@rediffmail.com

Solution to
On a Use of Normal Distribution

Problem

For positive integers \(n \), consider the quantities \(A_n \) and \(B_n \) defined by

\[
A_n = \int_{-1}^{1} \cos^2 n \frac{\pi x}{2} \, dx,
\]

\[
B_n = \frac{1}{A_n} \int_{-1/\sqrt{n}}^{1/\sqrt{n}} \cos^2 n \frac{\pi x}{2} \, dx.
\]

(1)

It is easy to anticipate that \(A_n \to 0 \) when \(n \to \infty \); some sample values are displayed below, computed using *Mathematica*.

\[
A_{100} \approx 0.1127, \quad A_{200} \approx 0.0797,
\]

\[
A_{400} \approx 0.0564, \quad A_{1000} \approx 0.0357.
\]

(2)

Since the range of integration in the integral defining \(B_n \) steadily diminishes, we might also guess that \(B_n \to 0 \).
as \(n \to \infty \). But the figures tell us otherwise; indeed we find that

\[
B_{100} \approx 0.9742, \quad B_{200} \approx 0.9739,
\]

\[
B_{400} \approx 0.9738, \quad B_{1000} \approx 0.9737. \tag{3}
\]

The figures suggest that \(B_n \) converges to a non-zero value (approximately 0.974) as \(n \to \infty \). How may this be explained? What is the limiting value, and can it be expressed in closed form?

Solution

The following may be verified:

\[
A_1 = 1, \quad A_2 = \frac{3}{4}, \quad A_3 = \frac{5}{8}, \quad A_4 = \frac{35}{64}, \quad A_5 = \frac{63}{128}. \tag{4}
\]

It is easy to obtain an exact formula for \(A_n \). Integrating by parts, we get

\[
\frac{A_n}{A_{n-1}} = \frac{2n - 1}{2n} \quad \text{(for} \ n > 1, \text{)} \tag{5}
\]

and since \(A_1 = 1 \), this leads to:

\[
A_n = \frac{1}{2^{2n-1}} 2n(n). \tag{6}
\]

Using Stirling's approximation, \(n! \approx \sqrt{2\pi n} (n/e)^n \), we get the useful approximation

\[
A_n \approx \frac{2}{\sqrt{n\pi}}. \tag{7}
\]

which tells us that \(A_n \) is roughly proportional to \(1/\sqrt{n} \) for large \(n \). This is what our data also reveal; e.g., we see that \(A_{400} \) is roughly half of \(A_{100} \).
For \(n \gg 1 \), the range of integration in the integral defining \(B_n \) is a narrow interval surrounding 0, so we may use the approximation \(\cos x \approx 1 - \frac{x^2}{2} \). We get, for \(n \gg 1 \):

\[
\int_{-1/\sqrt{n}}^{1/\sqrt{n}} \cos^{2n} \frac{\pi x}{2} \, dx \approx \int_{-1/\sqrt{n}}^{1/\sqrt{n}} \left(1 - \frac{\pi^2 x^2}{8} \right)^{2n} \, dx
\]

\[
= \frac{1}{\sqrt{n}} \int_{-1}^{1} \left(1 - \frac{\pi^2 u^2}{8n} \right)^{2n} \, du
\]

\[
\approx \frac{1}{\sqrt{n}} \int_{-1}^{1} e^{-\frac{\pi^2 u^2}{4}} \, du. \tag{8}
\]

Making another change of variable, \(v = \frac{\pi u}{2} \), we get

\[
\int_{-1/\sqrt{n}}^{1/\sqrt{n}} \cos^{2n} \frac{\pi x}{2} \, dx \approx \frac{2}{\pi \sqrt{n}} \int_{-\pi/2}^{\pi/2} e^{-v^2} \, dv. \tag{9}
\]

Since \(A_n \approx \frac{2}{\sqrt{\pi n}} \) for \(n \gg 1 \), we get, for \(n \gg 1 \),

\[
B_n \approx \sqrt{\pi} \int_{-\pi/2}^{\pi/2} e^{-v^2} \, dv = \frac{\int_{-\pi/2}^{\pi/2} e^{-v^2} \, dv}{\int_{\infty}^{\infty} e^{-v^2} \, dv}. \tag{10}
\]

We have found our answer: the limiting value of \(B_n \) is

\[
\frac{\int_{-\pi/2}^{\pi/2} e^{-v^2} \, dv}{\int_{\infty}^{\infty} e^{-v^2} \, dv} \approx 0.97368, \tag{11}
\]

agreeing exactly with our computations.

Remark. Inasmuch as the answer has been found in terms of the density function of the normal distribution, it would seem that we should be able to get the answer through a probability-based argument. Does the reader see any such solution?