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The Myth about Einstein 

Sushanta Dattagupta 

In common perception, Einstein comes out as a 
strong mathematical physicist. This is however 
a myth. The 1905 Einstein was close to real life 
phenomena. This article presents how he used 
simple mathematics to understand experiments, 
especially on Brownian Motion and Photoelec
tric Effect, employing the underlying concept of 
thermodynamic fluctuations. 

The popular image of Albert Einstein, mostly drawn 
from his portraits at a somewhat ripe age, is not merely 
that he was a dreamy-eyed, long-haired and a bit absent
minded scientist, but that he was very strongly math
ematicallyoriented. This perception of Einstein is bol
stered by his work on the General Theory of Relativity 
(1915) that impacts on our universe and the cosmos, 
which not only pose challenging issues to trained physi
cists but also conjure up in the minds of the uninitiated, 
a sense of distant vastness, almost bordering on mysti
cism. 

In pursuit of the "general theory of relativity Einstein 
did actually master covariant and contravariant tensor 
analysis, as propounded by the stalwart mathematicians 
Gauss, Riemann, and others and did become an expert 
on many aspects of geometry. This resulted in the depar
ture from Euclidean geometry and heralded the birth of 
fascinating new ideas of space-time geometry. It is this 
development which has perhaps led to the commonly 
perceived vision of Einstein. But the point is, and that 
point is going to be a recurring theme of this presen
tation, that Einstein employed Mathematics merely as 
a tool in developing a new structure of a theory, not 
so much to make new contributions to the subject of 
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Figure 1 (left). Schematic 

illustration of photo elec
tric effect. 

Figure 2 (right). Kanji script 
on the surface of copper 
with the aid of diffusing iron 
atoms. 
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mathematics itself but to understand the phenomenon 
of gravity and gravitational fields. 

The above perception of Einstein in the popular mind 
that he was a powerful mathematical physicist whose 
work was beyond comprehension of ordinary mortals, 
is one myth that I would like to dispel. Indeed as we 
come to discuss the 1905 Einstein, which is what our 
task is in this annus mirabilis, we will discover below 
that the mathematics Einstein used was actually simple, 
within the realm of understanding by present plus-two 
students. Einstein's primary focus was to elucidate nat
ural phenomena, as evident in everyday life and as seen 
through experiments. 

Given this background, let me turn attention to two 
of Einstein's stupendous contributions in the year 1905, 
the photoelectric effect (Figure 1), which fetched him the 
Nobel Prize, and Brownian motion (Figure 2). What is 
presented in Figure 1 is a schematic illustration of how 
by shining light on a metallic plate, an electric current 
can be generated from the ejected electrons, whereas 
Figure 2 depicts an application of diffusion, emanating 
from the theory of Brownian motion, in simulating Kanji 
script on the surface of copper with the aid of diffusing 
iron atoms. 
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What is a remarkable commonality between the Brown
ian motion and the photo electric effect is Einstein's 
usage of Boltzmann's idea of statistical fluctuations. In 
our discussion on these two topics I will try to pinpoint 
where Einstein makes ingenious application of the con
cept of thermally-aided fluctuations that give rise to the 
classical Equipartition Theorem of Kinetic Theory. 

A. Brownian Motion 

In this section I describe Einstein's work on Brownian 
motion, preceded by his doctoral thesis which was sub
mitted on 30 April 1905 but published later in 1906. 
The thesis is a remarkable exposition of Einstein's con
tact with real life phenomena - it is a description of a 
new method for determining the Avogadro number (N) 
and the size (a) of a molecule. It is incredible today to 
imagine that something like 'Molecular Reality' which 
we take for granted as a concept, found no consensus 
amongst physicists and chemists in as late as the 19th 
century! Einstein's PhD thesis deals with bulk rheo
logical properties of particle suspensions and contains 
results with an extraordinary range of applications, rel
evant to: 

(i) Construction industry, based on what has now 
emerged as a novel interdisciplinary subject of gra
nular matter; 
(ii) Dairy industry, through the colloidal suspen
sion properties of, for instance, casein micelles in 
cow's milk; and 
(iii) Ecology, involving the Brownian movement of 
aerosol particles in clouds. 

On this, Abraham Pais writes in his most readable bi
ography on Einstein: Subtle is the Lord: "... Einstein 
might have enjoyed hearing this, since he was quite fond 
of applying physics to practical situations" 

I now turn attention to Einstein's thesis in which he 
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Figure 3. Model: Region of 
solvent containing dilute 
amounts of much bigger 
sized solute molecules. 
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produced two separate ingeniously developed ideas that 
led to two separate relations between N, the Avogadro 
number and a, the radius of a molecule, assumed spher
ical. 

1. 'Renormalized' Viscosity 

Like all practitioners of the art Einstein considers a sim
ple model, a region of solvent, containing dilute amounts 
of solute whose molecules are much bigger in size than 
the solvent molecules (Figure 3). How big are the solute 
molecules? Well, their radii are smaller than 10-3 mm, 
which in today's parlance, translates into 1000 nm, and 
hence it is relevant to mention how critically important 
Brownian motion is, in the contemporarily significant 
topic of Nanoscience. The system at hand could be a 
dilute solution of sugar molecules as solutes, dissolved 
in water as solvent. 

Einstein makes the reasonable assumption that the (bare) 
viscosity", of the solvent, upon mixing with solute, must 
be enhanced to a renormalized value ",* where the frac
tional increase must be proportional to the volume of 
the solute per unit volume of the solvent: 

TJ* 4 3 N - = 1 + -1ra -po 
", 3 M 

(1) 

In (1), ~-rr.a3 is the volume of a solute molecule. The 
quantity Z. p is the number of solute molecules in a unit 
volume of the solvent, wherein p is the density i.e. mass 
of the solute per unit volume of the solvent, N is the 
Avogadro number and M is the molecular weight of the 
solute. Einstein then makes use of the experimental data 
on TJ* and TJ for sugar solutions, and knowing M and 1}, 

determines the product (N a3 ). 

2. Thermodynamic plus Dynamic Argument 

In order to evaluate N and a separately Einstein, of 
course, needed another relation between N and a, and 
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in striving to arrive at that, produced a brilliant combi
nation of arguments from Boltzmann's thermodynamics 
and fluid dynamics a la Fick and Stokes. 

Consider again the region of Figure 3 and the fluid mo
tion, never meant to stop at any finite temperature, 
taken to be in one direction, say x, for the sake of sim
plicity. In arriving at this picture Einstein was most def
initely influenced by the original observation of Robert 
Brown that the particles in the liquid, in this case the 
solute molecules, are in incessant, random motion due 
to the temperature of the solvent. Thus the solvent is 
expected to provide a push to the solutes, and if F is 
the concomitant force on each solute molecule, the force 
per unit volume of the solvent will be F multiplied by 
our earlier encountered factor of z.p , which measures 
the number of solute molecules in a unit volume of the 
solvent (see Figure 4). This must equal the pressure 
gradient, hence 

(2) 

Einstein now takes recourse to Boltzmann's concept of 
thermal fluctuations and making the bold assumption 
that the dilute solute particles should behave as the 
molecules of an ideal gas, writes for the pressure 

(3) 

where R is the gas constant (= NkB, kB being the Boltz
mann constant, as we know now), and T is the temper
ature. Therefore, 

8p FN 
ax = Kr P. (4) 

Einstein then moves onto fluid dynamical arguments and 
proposes that the force F must be of viscous origin, 
given by the Stokes law: 

F = -67rT/av, (5) 

--+-F 

Figure 4. Model: 'Internal' 
viscous force F on each 
solute molecule. 
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where, on the other hand, the velocity v must be given 
by Fick's law of diffusion: 

8p 
plI = -D 8x' (6) 

D being the diffusion coefficient. Miraculously then, 
F drops out from the analysis (which underscores the 
depth of Einstein's analysis) and so do p and *' result-
ing in: 

IU' 
D= . 

67rN1]a 
(7) 

Equation (7), through the measurement of D at a given 
temperature T, leads to another relation determining 
now the product (N a) which, when combined with the 
result based on equation (1), yields a and N separately. 
Einstein thus computed N as 6.6 x 1023 , very close in
deed to the presently accepted value. 

3. Diffusion 

Eleven days after submitting the thesis appears the pa
per by Einstein on the Brownian motion in which Ein
stein provides a mathematical formulation of the physi
cal ideas already embodied in the thesis. Consider again 
one dimension x in which n(x, t) measures the number 
of suspended solute particles per unit volume around 
x at time t. Because the total number of particles is 
conserved n(x, t) must obey an equation of continuity: 

8n(x, t) 8(nv) 
at = ---ax-. (8) 

Since n is proportional to the density p, the right hand 
side of (8) obeys the same equation as in (6), yielding 
the diffusion equation: 

8n(x, t) = DePn(x, t) 
at ax2 . 

(9) 
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This equation, for free boundary conditions, has the so
lution 

n (X2 ) n(x,t) = v'4rrDt exp --D ' 
41fDt 4 t 

(10) 

with the initial condition: 

n(x, 0) = n8(x), (11) 

and the normalization: 

f n{x, t)dx = n. (12) 

From equation (10), we can immediately write down an 
expression for the mean square displacement (from the 
origin): 

(13) 

which, upon substitution of equation (10), yields 

(14) 

The remarkable aspect of this analysis is that while the 
thesis dealt with the macroscopic aspects of diffusion, 
equation (14) puts it in the proper perspective of fluc
tuation phenomena: (x2 ) is related to the mean square 
fluctuationofx(((x-(x)?) = (x2)_(X)2). Furthermore, 
inserting the expression for D in equation (7) yields 

2 RT 
(x ) = 3- N t. 

7r TJa 
(15) 

This term is the first clear statement of the Fluctuation
Dissipation theorem. While the left hand side of (15) 
measures fluctuations, the right hand side, because of its 
dependence on the viscosity and hence, friction, embod
ies dissipation! Apart from this theoretical nicety, (15) 
provides a remarkable operational aid to computing the 
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Avogadro number N: prepare a set of small spheres, be 
it of sugar molecules or of polystyrene, or whatever, ... 
use a stopwatch and a microscope and keep measuring 
(x2

) - the result yields N! 

Einstein did not just stop at the diffusion equation (9), 
he laid the foundation of the Stochastic Theory of Brown
ian Motion by giving a new interpretation to (9) in terms 
of what is now called a Markov process. This was based 
on a simple ansatz that the suspended particles move 
independently of one another, again justified because 
of the dilution involved. This means that if the den
sity of particles within the region x and x + dx grows 
from n(x, t) at time t to n(x, t + 7) at time t + 7, where 
T is an incremental change (7 « t), the growth must 
be at the expense of the density at the preceding step 
(x - Ll)(ILlI « Ixl) measured by n(x - Ll, t). Thus 

,00 

n(x, t + T) = J d~n(x -~, t)<I>(~), t» T, (16) 
-00 

where <p(~)d~ is the probability that a particle is dis
placed, in an interval T, between ~ and Ll + dLl. Note 
that the independence of particle motion is tacitly in
corporated in writing probabilities in a multiplicative 
form, under the integral in (16). The probability <I>(Ll) 
is expected to have the plausible properties: 

00 

J <I>(~)d~ = 1, (17) 

-00 

and 

(18) 

Equation (17) means probability is conserved while (18) 
stipulates that 'jumps' are symmetric, reminiscent of un
biased random walks in one dimension! We may then 

7 
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Taylor-expand both sides of (16) in space as well as time, 
to yield 

( ) 8n(x, t) = Joo d A til( A) [( t) ~2 82
n(x, t)] 

n x, t + T at L..\ L..\ n x, + 2 ax2 

-00 

(19) 

where the first order term, proportional to ~, under 
the integral vanishes because of the symmetry condition 
(18). Employing then equation (17), we arrive at the 
diffusion equation (9), but now the diffusion constant 
has a new interpretation: 

00 

D = 2~ J A.2<I>(A)dA. (20) 
-00 

This 'microscopic' formulation of diffusion in which the 
coefficient of diffusion is obtained from the 'random walk' 
of a tagged particle provides a nice link, through (9), to 
'macroscopic' diffusion of a region (between x and x+dx) 
containing a cluster of particles. 

It is interesting to reflect on what Einstein himself thou
ght of his paper on Brownian motion. In 1915, the year 
in which he worked out the general theory of relativity, 
Einstein writes " the theory of Brownian motion is of 
great importance since it permits an exact computation 
of N The great significance as a matter of principle 
is, however, that one sees directly under the micro
scope part of the heat energy in the form of mechanical 
energy," and in 1917, Einstein further muses ". 
because of the understanding of the essence of Brown
ian motion, suddenly all doubts vanished about the cor
rectness of Boltzmann's interpretation of the thermody
namic laws." In the words of Pais: "Had I to compose 
a one-sentence scientific biography of Einstein, I would 
write, better than anyone before or after him, he knew 
how to invent invariance principles and make use of sta
tistical fluctuations." 
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Figure 5. A hal/ow spheri

cal black body. 
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The ideas of Brownian motion are still vigorously alive 
today in myriad branches of science dealing with the 
condensed phase of matter, biology and materials sci
ence - in particular, nanomaterials science. They have 
also opened new vistas to basic issues, concerning for ex
ample, nonequilibrium statistical physics and quantum 
Brownian motion. 

B. Black Body Radiation 

Having discussed Brownian motion I now indicate how 
thermodynamics and fluctuation ideas also shaped Ein
stein's work on the Black Body Radiation. For this, 
we turn to the year 1900 when Max Planck proposed 
his celebrated formula for the energy density of black 
body radiation. Indeed, the Planck formula is the essen
tial starting point in our effort to appreciate Einstein's 
path-breaking contribution to the photon and the photo
electric effect. 

In Figure 5 I have sketched what may be called a black 
body. The energy density c(v) or the energy per unit 
volume as a function of the frequency v of radiation and 
temperature T is shown in Figure 6, and can be written 
as: 

GV
3 

c(v) = E ' 
e T -1 

Metallic Cavity B1acteDed Inside 

Insulation 

(21) 
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where a and, are constants, the determination of which 
constitutes one of the important aims of the 1905 pa
per of Einstein. The basic point of Planck was that 
the formula (21) interpolates between the low frequency 
(ex: v 2 ) quadratic behaviour (cf. Figure 6) attributed to 
Rayleigh and Jeans and the high frequency (ex: exp( - ¥)) 
exponential falling-off seen in Figure 6, and discovered 
earlier by Wien. 

1. High T Limit 

Einstein first considered the high temperature (i.e. ¥ « 
1) limit of equation (21) to derive 

(22) 

He then went on to make the brilliant argument that the 
black body radiation must be viewed as an ideal pho
ton gas, the energy of which had to be governed by the 
equipartition theorem of kinetic theory. Therefore, each 
mode of the electromagnetic field in the black body cav
ity must contribute an energy kBT and since the number 
of modes of frequency v per unit volume is 8:3'2, c being 
the speed of light, Einstein concluded: 

87rv2 

c(v) = -3-kBT 
c 

(23) 

Figure 6. Black body spec

trum for various tempera
tures. 
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(Note that in writing (23) Einstein was using the con
cept of thermodynamic fluctuation of energy; indeed the 
fluctuation idea of statistical mechanics has been a re
curring theme that shaped Einstein's mind not just in 
the context of black body radiation but Brownian mo
tion as well, as discussed earlier.) This alternate form of 
e(V) in (23) allowed Einstein to immediately compute ~ 
. T 
In terms of the fundamental constants k Band c: 

a 87rkB 
3 ' C 

(24) 

the value of which turns out to be 1.26 x 10-46 in c.g.s. 
units. 

2. Low T Limit 

Einstein next proceeded to study the low temperature 
limit of (21), in which 

(25) 

This expression then provides an alternate definition of 
the inverse temperature T- 1 (by taking logarithm of 
(25)) which he equated to the thermodynamic definition 
of T- 1 from the second law 

~ = ~ln (~) = Bs 
T ,V av3 Be' 

(26) 

where s = f is the specific entropy, S being the ex
tensive entropy for a volume V (Note once again how 
much did thermodynamics influence Einstein!) 

The last two expressions in equation (26) yield a dif
ferential equation for s in terms of e which, when inte
grated, yields 

s = - ~v [dn (a:a) - c:] + constant. (27) 

Einstein then determined the integration constant by 
first converting the left hand side of (27) into an equation 

-74----------------------------~---------------------------
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for the extensive entropy 8 and equating the reference 
entropy for a volume Va to 80, thus 

8 - 80 = ~ In (V) , ,v Va (28) 

where E( = EV) is the total energy of the radiation, kept 
fixed. 

Finally, Einstein took recourse to Boltzmann who, as 
already mentioned, had a profound impact on Einstein's 
work, and had given the celebrated entropy formula: 

8-80=kBln(~) , (29) 

W being the probability of configuration of n photons 
in a volume V For a photon gas, 

w=Vn
, 

and therefore, 

8 - 80 = nkB In (~) 
Comparing (31) with (28) Einstein surmised that 

E 
- =nkB, ,V 

or 

E = n(,kB)v. 

(30) 

(31) 

(32) 

(33) 

Equation (33) then yields the remarkable energy quan
tization formula: 

E = nhv, (34) 

where the constant appearing in the Planck formula 
(21) can be identified as k~. I t must however be em
phasized that the energy E appearing in (34) is the 
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thermodynamic energy which, in modern statistical me
chanics, has the interpretation of (H), i.e., the average 
of the Hamiltonian operator. Consequently, n in (34) 
must be regarded as the average photon number that 
is given by (N), N being the number operator. It is 
the unraveling of the angular brackets (. .) that takes 
us from thermodynamics to statistical mechanics, i.e. 
from the macroworld to the microworld. And therein 
lies the transition from Albert Einstein to Satyendra 
N ath Bose. While Einstein looked at the Planck formula 
from the reference frame of the macroworld, Bose's work 
made possible the further conceptual jump into the mi
croworld and the discovery of a new statistics. But that 
is a different story. 

The remarkable feature of Einstein's work on the photon 
is that in one shot he broke away from the shackles of 
Maxwell's concept of light - light is wave that exhibits 
interference, diffraction and polarization. Einstein dis
cards this notion of light as wave and in a sense, resur
rects the corpuscle idea of Newton in treating light! In 
making this bold step Einstein was of course guided (as 
he inevitably was, in the year 1905) by experiments -
the experiments of Lenard (1902) which revealed that 
the maximum electron energy ejected from a metal due 
to impinging light showed "not the slightest dependence 
on the light intensity" That led to the famous equa
tion Cmax = hv - 4;>, 4;> being the work function of the 
metal, which forms the cornerstone of the photoelectric 
effect. Speaking of this equation Millikan (1915) states: 
"I spent 10 years testing that 1905 equation of Einstein 
and contrary to all my -expectations, I was compelled 
to assert its unambiguous verification in spite of its un
reasonableness since it seems to violate everything we 
know about the interference of light" Millikan further 
deduced from his experiments the value of the Planck 
constant h as 6.4 x 10-27 erg-sec. 

Taking the two papers of Einstein, on Brownian motion 

7 -6----------------------------~-----------R-E-SO--NA-N-C-E--I-Ja-n-u-ar-y-2-0-06 



Radiation 
Pressure 
(M.N. Saba) 

BroWDian Motion 

GENERAL I ARTICLE 

and the black body radiation, in juxtaposition, we ob
tain a glimpse of the Trinity in Einstein's world: Light, 
Matter and Heat (see Figure 7). Light consists of parti
cles called photons which are responsible for the photo 
electric effect. 

At the same time photons constitute the black body ra
diation within a cavity which is at thermal equilibrium, 
determining spectrum of energy levels associated with 
atoms and molecules of the cavity. Thus, light gets re
lated to heat, as can be seen more clearly through the 
work of Bose and the Bose-Einstein statistics of pho
tons, in which the temperature plays an essential role. 
On the other hand, light is also electromagnetic waves, 
described by Maxwell's equations which, in turn, are in
variant under the Lorentz transformation of the Special 
Theory of Relativity. From light to heat, we connect to 
Brownian motion, which is the result of random motion 
in a fluid, generated by 'spontaneous' thermal fluctua
tions due to heat. Thus, heat leads to damping through 
viscous forces which impinge on matter. Matter is some
thing that we study in mechanics but material motion is 
not only influenced by heat, as in Brownian movement, 
but also by light, due to a phenomenon called Radiation 
Pressure, thus completing the circle of Trinity. Radia
tion pressure is a subject to which another great savant 
of Indian Science, Meghnad Saha, made invaluable con
tributions. 

Figure 7. Trinity in Eins
tein's World. 
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C. Concluding Remarks 

I would like to conclude by emphasizing once again that 
young Einstein was very close to experiments - he was 
deeply influenced by Lenard's measurements on the pho
toelectric effect, Brown's observations of random motion 
of suspended pollens, the viscosity data in sugar solu
tions, and so on; and he was interested in computing 
numbers, such as the Avogadro number and the Planck 
constant. This brings us to point out one very significant 
attribute, not often widely appreciated, of Einstein's 
1905 contributions - they were all motivated by phenom
ena, as we begin to recognize more in analyzing his treat
ment of the Brownian motion, discussed in Section A. 
The second lesson is about Einstein's open-mindedness 
in embracing ideas and concepts from apparently dis
tant fields. Thus even though he was concerned with 
the elementary particle of photon in his analysis of the 
photo electric effect, Einstein was constantly borrowing 
methods and concepts from Boltzmann's thermodynam
ics, as elaborated in Section B. Similarly, he adapted the 
ideas of hydrodynamics, then in the domain of chemi
cal engineers, to his treatment of the Brownian motion. 
Finally, we should learn from what turns out to be the 
hallmark of Einstein's approach - his unflinching bold
ness. Even though Maxwell's electromagnetic theory 
was well entrenched in terms of the observed wave phe
nomena of interference and diffraction Einstein shows 
rare courage in its complete repudiation. Interestingly 
enough, the same Maxwellian theory is resuscitated by 
Einstein when he turns later, in the same year of 1905, 
to the special theory of relativity! 

Einstein was not just a Gyana Yogi but a Karma Yogi 
as well! 

I thank Malay Bandyopadhyay for help in preparing the 
manuscript. 
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