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Wavelets: Applications to Image Compression-II 

Sachin P Nanavati and Prasanta K Panigrahi 

We explain here, the wavelet based threshold
ing procedure, one of the key factors behind the 
successful application of wavelets in image com
pression. We then elaborate on quantization and 
go on to outline the basic ideas underlying Huff
man coding, the other important tool for data 
compression. 

Introduction 

In the first part of this article [1], we have described 
in detail the origin of various kinds of redundancies in 
still images, which makes them amenable for compres
sion (2,3]. We have also pointed out the advantages of 
wavelets over the earlier used discrete cosine transform. 
In this article, we describe the various steps in image 
compressiori like thresholding, quantization and entropy 
encoding. We describe the run-length coding, differen
t.ial pulse code modulation and the most popular Huff
man coding. These procedures take advantage of the dif
ferent types of redundancies, for achieving compression 
of images. We start with the operation of thresholding. 

Thresholder 

Once DWT is performed, the next task is thresholding, 
which is neglecting certain wavelet coefficients. For do
ing this one has to decide the value oj a threshold and 
how to apply the same. 

Value of the Threshold 

This is an important step which affects the quality of the 
compressed image. The basic idea is to truncate the in
significant coefficients, since the amount of information 
contained in them is negligible. 
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The question of deciding the value of threshold is a prob
lem in itself. Ideally, one should have a uniform recipe, 
which would work satisfactorily for a given set of prob
lems, so that the procedure is automated. One such 
method by Donoho and co-authors [4] gives an asymp
totically optimal formula called the universal threshold 
t: 

(1) 

Here, (J = standard deviation of the N wavelet coeffi
cients. 

The value of t should be calculated for each level of 
decomposition and only for the high-pass coefficients. 
The low-pass coefficients are usually kept untouched so 
as to facilitate further decomposition. 

How to Apply a Threshold 

There are two ways in which threshold can be applied. 

a) Hard threshold: If x is the set of wavelet coeffi
cients, then threshold value t is given by, 

T(t x) = {O if Ixl <. t 
, x otherwIse, 

(2) 

i.e., all the values of x which are less than threshold t 
are equated to zero. This condition is shown in Figure 
l(b). 

b) Soft threshold: In this case, all the coefficients x 
lesser than threshold t are mapped to zero. Then t is 
su btracted from all x ~ t. This condition is depicted by 
the following equation: 

T t _ {O if Ixl < t 
(,' x) - sign(x)(lxl- t) otherwise. (3) 

This condition is shown in Figure l(c). Usually, soft 
threshold gives a better peak signal to noise ratio (PSNR) 
as compared to hard threshold. 
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Higher compression ratios can be obtained by quantiz
ing the non-zero wavelet coefficients, before they are 
encoded. A quantizer is a' many-to-one function Q(x) 
that maps many input values into a (usually much) 
smaller set of output values. Quantizers are staircase 
functions characterized by a set of numbers {di , i == 
0, ... , N} called decision points and a set of numbers 
{ ri , i == 0, .... , N - 1} called reconstruction levels. An 
in pu t value x is mapped to a reconstruction level r i, if x 
lies in the interval (di , d(i+1)]. 

To achieve best results, a separate quantizer should be 
designed for each scale, taking into account statistical 
properties of the scale's coefficients and, for images, prop
erties of the human visual system. The coefficient statis
tics guide the quantizer design for each scale, while the 

Figure 1. Different thresh
olds: (a) original (b) hard 
and (c) soft. 
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human visual system guides the allocation of bits among 
the different scales. For our present purpose, a silnple 
uniform quantizer (i.e., constant step size) is used. The 
wavelet coefficients (Figure 4 on p.26), after thresholding 
were uniformly quantized into 256 different bins. Thus 
the size of each bin was (xmax - xmin)!256, where Xmin 
and Xmax are the wavelet coefficients with minimum and 
maximum values, respectively. To minimize the nlaxi
mum error (minimax condition), centroid of each bin is 
assigned to all the coefficients falling in that bin. For 
discussions on non-unifornl quantizers, interested read
ers can refer [3]. 

Entropy Encoder 

This is the last component in the compression model. 
Till now, we have devised models for an alternate repre
sentation of the image, in which its interpixel redundan
cies were reduced. This last model, which is a loss less 
technique, then aims at eliminating the coding redundan
cies, whose notion will be clear by considering an exam
ple. Suppose, we have a domain in an image, where pixel 
val ues are uniform or the variation in them is uniform. 
Now one requires 8 bpp (bits per pixel) for representing 
each pixel since the values range from 0 to 255. Thus 
representing each pixel with the same (or constant differ
ence) value will introduce coding redundancy. This can 
be eliminated, if we transform the real values into some 
symbolic form, usually a binary system, where each sym
bol corresponds to a particular value. We will discuss a 
few coding techniques and analyse their performances. 

Run Length Encoding 

Run-length encoding (RLE) makes use of the fact that 
nearby pixels in an image will probably have the same 
brightness value. This redundancy can then be coded 
as follows, 
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Original image data (8-bit) 

127 127 127 127 129 129 129 

Run-length encoded image data 

127 4 129 2 
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This technique will be useful for encoding an online sig
nal. But data explosion problems can occur and even a 
single data error will obstruct full decompression. 

Differential Pulse Code Modulation 

Predictive image compression techniques assume that a 
pixel's brightness can be predicted given the value of 
the preceding pixel. Differential pulse code modulation 
(DPCM) codes the differences between two adjacent pix
els. DPCM starts coding at the top left-hand corner of 
an image and works left to right, until all the image is 
encoded as shown: 

Original Image Data 

86 86 86 86 88 89 89 89 89 90 90 

86-0-0-0-2-1-0-0-0-1-0 

DPCM Code 

This technique will be useful for images that have larger 
runs of equal-value pixels. 

Huffman Coding 

This is the most popular statistical data compression 
technique for removing coding redundancy. It assigns 
the smallest pos$ible number of code symbols per source 
symbol and hence reduces the average code length used 
to represent the set of given values. The general idea 
is to assign least number of bits to most probable (or 
frequent) values occurring in an image. The Huffman 
code is an exam pIe of a code which is optimal when 
all symbols have possibilities of occurrence which are 

Predictive image 

compression 

techniques assume 

that a pixel's 

brightness can be 

predicted given the 

value of the 

preceding pixel. 

The Huffman code 

is an example of a 

code which is 

optimal when all 

symbols have 

possibilities of 

occurrence which 

are integral powers 

of 1/2. 
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integral powers of!. A Huffman code can be built in 
the following manner: 

• Rank all symbols in decreasing order of probability 
of occurrence. 

• Successively combine the two symbols of the low:
est probability to form a new composite symbol 
(source reduction); eventually we will build a bi
nary tree, where each node is the probability of all 
nodes beneath it. 

• 'frace the path to each leaf, noticing the direction 
at each node. 

For a given frequency distribution, there are many pos
sible Huffman codes, but the total compressed length 
will be the same. It is possible to define a canonical 
Huffman tree, that is, pick one out of many alternative 
trees. Such a canonical tree can then be represented 
very compactly, by transmitting only the bit length of 
each code. For more details, interested readers can refer 
to [5,6J. 

Results 

We now briefly discuss the results obtained from our 
analysis. Fj.qure 2 is the oJigin~1 Lena image [7]. Lena, 

50 100 150 200 250 300 350 400 450 500 
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Reconstruction after Soft threshold PSNR 41 .56 dB Reconstruction after hard threshold PSNR 45.02 dB 
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an academic model in the image processing community, 
has emerged as a benchmark image for testing the ef
ficacy of various algorithms. This gives a chance to 
researchers across the globe, to compare and contrast 
t.heir. respective methods. The image was subjected to 
one level DWT, using Daubechies '-6 wavelet. The coef
ficients thus obtained, were thresholded using Donoho's 
formula (equation(I)), for both hard and soft (equations 
(2) and (3)) cases. The results are as shown in Figure 3. 
It is worth remembering that in soft thresholding, the 
wavelet coefficients less than or equal to the threshold 
are equated to zero and the remaining ones are reduced 
by the same amount, whereas in the hard case, the co
efficients above the threshold value are not altered. The 
PSNR when calculated using equations (2) and (3) turns 
ou t to be approximately 42 dB for soft case and 45 dB 
for hard case. 

To get an idea about the usefulness of DWT for image 
compression, let us consider the histograms of the origi
nal image and its DWT coefficients (Figure 4). The his
togram showing the gray scale values (ranging between 0 
to 255) of the original image, shows a wide distribution. 
The histogram after I-level DWT, reveals that almost 
68% of the coefficients are mapped to zero. Thus the 

Figure 3. Image reconstruc
tion aftersoft(left) and hard 
(right) threshold. 
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Figure 4. Peak normalized 

histogram of the grayscale 
values in the original im
age (left) and its histogram 

after 1-/evel discrete wave
let transform (right). 

Figure 5. Reconstructed 

images after soft threshold 

+ quantization (top) and af-
ter hard threshod + quanti-
zation (bottom). Note that 
the quality of the image is 
better in the one which has 
used soft thresholding and 
quantization. 
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only job now is to code efficiently, the remaining 32% 
of coefficients. These non-zero coefficients keep track of 
the differences or the changes in the image. One can fur
ther proceed by quantizing the thresholded coefficients. 
As explained earlier, wavelet coefficients after thresh
olding were uniformly quantized into 256 different bins. 
The value of the centroid of a bin was assigned to all 
the coefficients falling in that bin. Figure 5 shows the 
image reconstructed, after quantization of soft and hard 
thresholded coefficients. Here the value of P S N R fur
ther degrades to about 31 dB, but the compression ratio 
increases manyfold. 

In conclusion, we have described the application of wave
let transform to image compression, a subject of intense 
current interest. The properties of images which makes 
them amenable for compression were pointed out as also 
the advantage of wavelets over neT of JPEG-93. The 
various steps like thresholding, quantization and their 
usefulness for compression were also pointed out. We 
dealt with the concept of entropy encoders to bring out 
the idea of lossless coding transparently. 
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