
GENERAL I ARTICLE 

Wavelet Transforms: Application to Data Analysis - I 

Jatan K Modi, Sachin P Nanavati, Amit S Phadke and Prasanta K Panigrahi 

Jatan K Modi (top left) 

is currently a visiting 

facultyat DOlT, Gujarat. His 

areas of interest are artifi

cialintelli gence, compilers 

and image processing. 

Sachin P Nanavati (top right) 

is currently working on a 

project at PRL, Ahmedabad. 

He enjoys trekking and bird 

watching. 

Amit S Phadke (bottom left) 

is presently working in 

'Cytotec', a software firm 

based in Vadodara, dealing 

with image processing and 

'Flow Cytometry' software. 

His research interests 

include image processing 

and artificial intelligence. 

Prasanta K Panigrahi (bottom 

right) is currently with the 

Quantum Information and 

Quantum Optics Division at 

PRL. His current research 

interests are in the areas of 

quantum information, 

solitons and wavelets. 

In this article, we elaborate upon the key ideas 
underlying the construction of various wavelet 
basis sets. The roles of translation and scal
ing, which enable the wavelets to localize vari
ations at desired levels of resolution, are clearly 
brought out. After explaining the implementa
tion of one dimensional wavelet transform, we il
lustrate their usefulness through the analysis of 
a data set. 

Introduction 

The much-studied Fourier series makes use of the peri
odic sinusoidal functions, to represent a time dependent 
function or signal in the frequency domain: 

(1) 

whose continuous version is given by 

1 J . f(t) = - dwF'(w) exp(zwt). 
271" 

(2) 

Here ao, ar and br are constant coefficients, which repre
sent the average of the function and the amplitudes of 
the cosine and sine waves with frequency r, respectively. 
F(w) is the Fourier transform of the function f(t), where 
w ranges from - 00 to 00. At a pictorial level, this means 
that the function f(t) has been built by the linear super
position of the basic building blocks, the sine and cosine 
waves, for the Fourier series and plane wave (exp( iwt)) 
for the continuous Fourier transform. The fact that, the 
plane waves extend from -00 to 00 makes them unsuit
able to capture local behavior in a function. It should 
be kept in mind that, in practical applications f (t) is 
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not continuous, but a discretely sampled data set. As 
has been explained in the previous article [1], this fact 
comes out quite clearly in the example of Gibbs' phe
nomenon. To describe a transient or sharply I changing 
phenomenon by Fourier transform, one needs to keep 
track of an infinite number of coefficients aT's and br's 
or F (w), a practically impossible proposition! 

Wavelets in Action 

In recent times, wavelet transform has emerged as an ad
vantageous tool for studying time varying and transient 
phenomena. In a number of cases, they complement 
the Fourier transform, by providing a better view of the 
structures present at different scales, as also achieving 
the so-called time-frequency localization, not possible in 
Fourier domain. Broadly speaking, two different fea
tures common to all wavelets are responsible for their 
utility value. The basis functions of the wavelets are 
produced from two units, the father wavelet (or scaling 
function) ¢(t) and the mother wavelet 'ljJ(t), by the op
eration of scaling and translation. Depending on the 
extent of the basis functions, there are two types of 
wavelets: discrete and continuous. For discrete wavelets, 
the basis functions have strictly finite extent, which does 
not hold for the continuous ones. In what follows, we 
will be primarily dealing with discrete wavelet trans
form, where the initial size of the father wavelet and 
its orthogonal mother wavelet is a free parameter, to be 
chosen depending on the problem at hand. 

Daughter wavelets, the other members of the orthog
onal basis set, are produced by scaling of the mother 
wavelets, such that they are orthogonal to the mother 
and father wavelets and all the other daughter wavelets, 
preceding them. These are then translated in steps com
mensurate with their size, so as to provide a complete 
basis set covering the entire time domain. Hence, the 
two basic operations scaling and translation, are all that 
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are needed to manufacture a complete· orthonormal ba
sis set. The father and mother wavelets need to satisfy 
the following conditions: 

I: tjJ(t) dt = A, I: 1/J(t) dt = 0, 

and I: </>*(t) 7jJ(t) dt = 0, (3) 

where A is an arbitrary constant. The energy of these 
functions is finite, which means 

I: ItjJ(tW dt < 00 and I: 11/J(tW dt < 00. (4) 

In what follows, we normalize both these functions to 
unity. It should be pointed out that, although we have 
given a general definition, most of the discrete wavelets 
are real valued. The scaling function captures the aver
age behavior of the data set under consideration and 
the wavelets detect the differences (more specifically, 
the weighted averages and differences). These are rep
resented as low-pass (or average) and high-pass (or de
tail) coefficients of the wavelet transform, respectively. 
The mother wavelets capture the variations at a broader 
scale, whereas the daughter wavelets zoom on to find the 
differences at progressively finer and finer scales. This is 
done in a systematic manner, until one reaches the max
imum resolution possible in a given data set. At each 
scale, translation allows one to localize the variations 
in the time domain. In a more precise sense, the basis 
set is labelled by two parameters j and k, representing 
scaling and translation indices, respectively. Hence, the 
normalized basis elements are given by 

Here, j and k take integral values, the values of j range 
from 0 to 00, whereas translation index k takes values 
from -00 to 00. In this notation, the original scal
ing function ¢(t) corresponds to </>o(t) and the mother 
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wavelet 1/J(t) corresponds to 1/Jo,o(t). As we mentioned 
earlier, the initial scale is arbitrary. One could have 
started from the scale index j = jo instead of j = 0, as 
has been done here. It is worth noting that, the transla
tion step of the daughter wavelet at scale j is 1/2j ; the 
thinner daughter wavelets sample the signal at a finer 
scale, through smaller translation steps. It is not diffi
cult to convince oneself that, in the limit j ~ 00, the 
wavelet basis forms a complete set [2]. 

Wavelet Transform 

In terms of the scaling and wavelet functions, one can 
expand a signal or function, which is square-integrable 
(belonging to L2 space), in the form 

00 00 00 

f(t) = L c(k) cPk(t) + L Ldj(k) 1/Jj,k(t). (6) 
k=-oo k=-oo j=O 

Here, the scaling function and wavelet coefficients are 
respectively given by, 

c(k) J: 4>~(t) f(t) dt, 

i: 1/Jj,k(t) f(t) dt. 

(7) 

(8) 

Note that, for convenience we have denoted the low-pass 
coefficients as c( k) instead of the mathematically cor
rect form, Co ( k ), since by choice the initial scale j has 
been taken as O. So far, we have not mentioned about 
the explicit nature or functional form of the members 
of the wavelet basis set. As we will soon see, one can 
find c(k)'s and dj(k)'s and also perform the inverse re
construction operation (i. e., retrieving back f (t) from 
c(k)'s and dj(k)'s), without explicitly knowing the form 
of the scaling and wavelet functions! As a matter of fact, 
apart from the simplest discrete wavelet Haar basis, one 
does not know the explicit form of these functions for 
any other discrete wavelet basis set. These can be ap
proximated, to any desired degree of accuracy, through 
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Figure 1. Description of 
multi-resolution analysis 
(MRA): (a) scaling function 
4J(t) and its translation by 
one unit 4J(t -1), (b) scaled 
version 4J(2t) and scaled and 
translated version 4J(2t - 1), 

(c) mother wavelet '11ft) = 
4J(2t) -4J(2t-1) and (d) a first 
generation, unnormalized 

daughter wavelet 'II(2t) = 
4J(4t) - 4J(4t - 1). 
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a recursive procedure. It should be emphasized that, al
though the explicit forms of the basis set is not known, 
there is no loss of information in wavelet transforms; the 
reconstruction of the function f (t) is perfect. 

The scaling function plays a key role behind the above 
miraculous property of the wavelet basis. First of all, the 
cu~ious reader must have noticed that, there is only one 
scaling function in any wavelet basis set. The reason for 
the same is that, unlike the daughter wavelets, a scaling 
function of higher scale ¢(2t) is neither orthogonal to the 
previous scaling function nor to the mother wavelet. In
terestingly, although ¢ (2t) is not a member of a wavelet 
basis set, it plays a significant role. As an illustration, in 
case of the Haar basis, it is straightforward to see that 
¢(t) = ¢(2t) + ¢(2t - 1) and 'ljJ(t) = ¢(2t) - ¢(2t - 1). 
Figure 1 describes this point pictorially; it also shows 
how the thinner daughter wavelet can be constructed 
from still thinner scaling functions. In this sense, an 
appropriate size scaling function can be thought of as a 
basic building block from which all the wavelets and the 
father wavelet can be prepared. 
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This fact is known as multi-resolution analysis (MRA), 
the corresponding mathematical equation goes by the 
name of dialation or MRA or refinement equation. This 
is the key equation common to all the wavelets: 

¢(t) 

'I/J (t) 

I: h(n)v2</>(2t - n), 
n 

I: h(n)v2¢(2t - n). 
n 

(9) 

Here, h ( n) and Ii ( n) take finite number of values and are 
respectively known as low-pass or average and high-pass 
or detail filter coefficients. This terminology is derived 
from the engineering literature, reminding us the fact 
that many branches of science, engineering and mathe
matics have contributed to the development of wavelets. 

Orthogonality and normalization conditions on scaling 
and wavelet functions impose a number of conditions on 
h(n) and h(n): 

I:h(n) = v2, I:h(n)h(n - 2k) = 8k ,o, I:h(n) = 0, 
n n n 

I:h(n)h(n - 2k) = 8k ,o, I:h(n)h(n - 2k) = 0. (10) 
n n 

Depending on the length of n, one can explicitly solve 
these algebraic equations, which characterize and dis
tinguish various basis sets in wavelet transform. For 
example, when n can take two values, 0 and 1, one finds 
that, 

1 1 - 1 - -1 
h(O) = \1'2' h(l) = \1'2' h(O) = \1'2' h(l) = \1'2' (11) 

N otice that the 1/\1'2 factors in the h ( n) and h ( n) cancel 
the V2 factors in (9) to yield the father and mother 
wavelets in terms of the scaling function ¢(2t) and ¢(2t-
1). Similarly, if n = 4, one finds that, 

h(O) = 
1 - cos Q + sin Q 

2V2 
(12) 
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h(l) 
1 + cos a + sin a 

(13) 
2V2 

h(2) 
1 + cos a - sin a 

(14) 
2V2 

h(3) 
1 - cosa - sina 

(15) 
2V2 

Here, there is one free parameter a. One gets the Haar 
coefficients for a = 0, I' and 3;. Sometimes, wavelets 
are made to satisfy additional conditions. For exam
ple, a very well-known wavelet, known as Daubechies'-4 
(D4, here 4 indicates the number of filter coefficients) 
basis set, satisfy J~oo t 'ljJj,k dt = O. With this additional 
restriction one finds that a = ~. The corresponding low
pass filter coefficients, corresponding to n = 0,1,2,3 are 
given by, 

h(O) = (1 + v'3) h(l) = (3 + v'3) 
4V2 ' 4V2 ' 

h(2) = (3 - v'3) h(3) = (1 - v'3) (16) 
4V2 ' 4V2 

The h( n) 's follow from the h( n) 's, since in general, 

h(n) = (-I)nh(n - N + 2k). (17) 

Here N is an arbitrary integer. For higher length of 
n, one gets more freedom in terms of free parameters. 
Hence, there are an infinite varieties of wavelets and the 
choice depends on the application at hand. The above, 
apparently abstract condition which the D4 wavelets 
satisfy, endows it with a magical property. These wave
lets, are blind to straight lines! Since, the wavelet co
efficients dj(k) = I f(t) 'ljJj,k(t) dt, for a straight line, 
f(t) = at + b, these will be zero, as I 'ljJj,k(t) dt = 0 and 
J t 'ljJj,k(t) dt = O. The information about the straight 
line, is kept by the low-pass coefficients. In a general sig
nal, variations around a straight line are captured by the 
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wavelets or high-pass coefficients. By imposing desired 
vanishing moments conditions, 

(18) 

where n = 1,2, etc, other Daubechies' basis sets can 
be designed to capture variations around higher polyno
mial curves. Thus for n = 2; we get Daubechies '-6(D6) 
wavelet, whose high-pass coefficients are insensitive to 
any polynomial of order two or less. If one implements 
the vanishing moments conditions on scaling functions, 
one gets the wavelet basis sets, called Coifiets. One can 
design various other basis sets, depending upon one's 
needs. 

Implementation of Wavelet Transform 

The MRA or dilation equation (9), can be used to show 
that 

n 

dj(k) = L:h(n - 2k)cj+l(n). 
n 

(19) 

(20) 

As before, n is the length of the filter coefficients. Iter
atively, Cj+l (k) can be connected to the higher scaling 
coefficients cj+2(k), which can, in principle, be contin
ued until j = 00. In order to understand the profound 
implications of the the above results, let us reiterate 
that, 

cj+l(k) = i: 4>j+l,k(t) f(t) dt, (21) 

where the normalized scaling function at scale j is given 
by 

(22) 

From above it is clear that, <Pj+l,k(t) is thinner as com
pared to <Pj,k(t) with an additional normalization factor 
V2. In the limit j ~ 00, the scaling function will be
come extremely thin and tall, mimicking a Dirac delta 
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function; hence, the corresponding low-pass coefficient 
Cj_co (k) is nothing but the value of the function f (t) at 
location k. As has been noted earlier, in practical appli
cations f (t) is not continuous but represents a discretely 
sampled data set. For this discrete data, the maximum 
resolution is achieved at a scale value where the scaling 
function's span is less than the distance between the in
dividual data points. This could be achieved by q num
ber of iterations (log2N), where the total number of data 
points, N = 2Q• Starting from the highest resolution 
low-pass coefficients, i. e., the data points, all the other 
lower scale high-pass and low-pass coefficients could be 
obtained from equations (19) and (20), by performing 
desired number of iterations. For example, a single iter
ation yields level 1 low-pass and high-pass coefficients, 
each containing half the number of data points of the 
original signal. These, low-pass coefficients can again be 
used as a seed to generate, level two low-pass and high
pass coefficients, each containing ~ data points. This 
procedure can be carried out up to maximum qth level 
of decomposition, where the low-pass function contains 
a single data point. Explicitly, for the Haar wavelets, let 
us illustrate the above procedure by an example. Con
sider the given signal f(t) as the sequence of points, 
ao, aI, a2, a3' In this case, there are 22 data points, 
hence q = 2 is the maximum level of decomposition pos
sible. 

As has been seen earlier, for the Haar wavelet, h ( n) and 
h(n) are given by [~, ~] and [~, ~] respectively. Af
ter applying low+pass and high-pass filter coefficients, as 
given in equations (19), (20), we get [( a0)fl) (a2)f3)] 
and r (a?fo) (a3Ji2)]. These are the level-1 low-pass 
and high-pass coefficients respectively. Note that we 
have skipped alternate points while computing low and 
high-pass coefficients. This process is called down-sampl
ing or decimation by two. The four original data points 
can be reconstructed from the two, level-1 low-pass and 
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hight-pass coefficients, by solving four simultaneous al
gebraic equations. It is easy to convince oneself that, not 
skipping the alternate points would have amounted to 
eight such equations, where four are redundant. Modulo 
a normalization factor, the first bracket contains near
est neighbour averages and the second one consists of 
nearest neighbour differences. 

In the second level of decomposition, the differences are 
kept unto.uched, while the above procedure is recursively 
applied on first low-pass coefficients yielding, 

* [(~) + (~)] and * [(~) -(~)]. 
We now have performed the maximum level of decompo
sition possible, by getting a single low-pass coefficient. 
The low-pass coefficient is the average of all the data 
points and the single level-2 high-pass coefficient is the 
difference of the nearest neighbour averages. A pictor
ial representation of the above decomposition procedure, 
upto three "levels is given in Figure 2. 

Original Signal 

7~ 
Averages Differences 

N/2 

: Differences 

Direrences 

N/8 

Figure 2. 1-0, three level, 
forward discrete wavelet 
transform (OWT). 

] Level 0 

N 

Levell 

Level 2 

Level 3 
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A very important property of the wavelet transform is 
that, it conserves the energy of the function or signal. It 
is known as Parseval's theorem. For a discrete signal of 
length N with the data points ai's, the energy is given 
by 

(23) 
i=O 

In the wavelet domain, the same is given by 

00 00 00 

E = L Ic(k)12 + L L Id j (k)12. (24) 
k=O j=O k=-oo 

For our above data set, the energy is given by a6 + ar + 
a~ + a~. After a 2-level decomposition, 

E 

(25) 

The necessity of the ~ normalization factors at each 
level, is now clear. Without these factors, the energy 
will not be conserved! Depending on the wavelet basis, 
these factors change, however energy remains conserved 
in all the basis sets. Let us see the I-dimensional wavelet 
analysis of a more realistic data set consisting of 1024 
(210 ) points. In principle, 10 levels of decomposition 
are possible, one may choose a lower level of decompo
sition. In Figure 3 we display the data and in Figure 4 
its wavelet decomposition up to 4 levels. 

The level-1 high-pass coefficients are 512 in number, 
while the level-4 low-pass coefficients number 64. The 
resemblance of the low-pass coefficients with the original 
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Original data 
5000,-------,---------,--------,-----r--------,---___ ~ 

Figure 3. Original data (1024 
data points) 
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Figure 4. 1-0 forward discrete 

wavelet transform (OWT) using 06. 
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data is evident; this feature is common to all wavelets. 
We have chosen D6 wavelet for analysis. One notices 
fluctuations at various scales in the wavelet domain. 
Certain prominent variations are clearly visible. One 
also finds coefficients having large values at the end of 
the detail coefficients, whereas significant variations are 
absent in the corresponding location of the data set. 
This is an artifact of the wavelet transform, arising be
cause of our use of the periodic boundary condition. 

It is sufficient to add, without going into details, that 
wavelets have found applications in the analysis of data 
sets derived from diverse sources like stock market, cos
mic rays, genome project, musical scores, seismic waves, 
etc. The power to disentangle variations at different 
scales and also to localize them in an optimal manner, 
has made these tiny waves create ripples in diverse and 
otherwise unrelated areas. 
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