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In Part 11 of this article, we have shown that the basic 
solution to the wave equation 

( 
1 8

2 2) (D) c2 8t2 - V v.(r, t) = 8 (r - ro) 8(t - to) (1) 

that vanishes as r ---+ 00, is given by 

,(D) (R ) = B( ) J dDk sin cTk ik-R 
7J , T C T ()D e 211" k 

(2) 

where D is the number of spatial dimensions, R == r - ro 
and T == t-to We now simplify and analyse the solution 
for different values of D. 

The Case D = 1 

The case of a single spatial dimension is somewhat dis­
tinct from the others, and simpler too. Let us dispose 
of this case first. 

Recall that the symbol k in the factor (sin CT k ) / k in (2) 
stands for Ik I; in the case D = 1, therefore, we should 
remember to write Ikl instead of just k in this factor. 
Further, k· R is just kX in this case, where X = x - Xo 

Therefore 

(1)( ) _ B() 100 

dk sin erlkl ikX_ 
1J. X, T - C T - I I e -

-00 211" k 

CBT - e ( ) 100 dk sin cTk ikX 

-00 21T' k 
(3) 

It is immediately evident from this expression that 
'/J,(l). (-X,T) = '/J,(l)(X,r), i.e., that '/J,(l)(X,r) is in fact 
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a function of IX I. Using eikX = cos kX + i sin A~X, we 
see that the contribution from the sin kX term vanishes 
because the integrand is an odd function of k. Thus 

u(1)(X, T) 

CB(T) -- sin (cTk) cos kX 100 dk 

o 7rk 

100 dk 
C B ( T ) - ( sin (CT + X) k + sin (CT - X) k) 

o 27rk 

i B ( T) (c (CT + X) + c (CT - X) ) ( 4) 

In the last equation, we have used the well-known fact 
that Iooo 

dk (sin bk)/k = (7r/2)c(b) for any real number 
b; here, the symbol c(b) = B(b) - B( -b) = +1 for b > 0, 
and c (b) = -1 for b < 0 . Simplifying the final expression 
in (4), we find 

(5) 

The second step function ensures that the signal does 
not reach any point x until time to + Ix - xoi/ c, as re­
quired by causality. The presence of this step function 
Inakes the other step function, B( T), redundant from a 
physical point of view. However, it is present in the for­
mal mathematical solution for the quantity u. (1) (X, T). 

But there is another aspect of the solution which is note­
worthy. Although an observer at an arbitrary point x 

starts receiving the signal at time to + Ix - xoi/ c, he does 
not receive a pu.lsed signal, even though the sender sent 
out such a signal. In fact, the signal received persists 
thereafter for all time, without diminishing in strength! 
This last feature is peculiar to D = l. Let us see what 
happens in higher dimensions. 

The Case D = 2 

Before we discuss the nature of the solution for D 2': 2, 
we must note an important feature of u.(D)(R, T). 

The signal does not 

reach any point x until 

time to + Ix-xol/c, as 

required by causality. 

In D=1, an 

observer does not 

receive a pulsed 

signal, even 

though the sender 

sent out such a 

signal. In fact, the 

signal received 

persists thereafter 

for all time, 

without diminishing 

in strength! 
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In 0 = 2 again, the 

signal is no longer a 

sharply pulsed one; it 

persists for all t > to + 

Ir - rolle, although its 

strength slowly 

decays as t increases. 
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~he expression in (2) is a scalar; by this we mean that 
it is unchanged under rotations of the spatial coordinate 
axes about the origin. This remains true for all integer 
values of D ~ 2. 

This assertion may seem to be more-or-Iess obvious, 
because k R is after all a scalar product of two D­
dimensional vectors. But it must be proved rigorously, 
which requires a bit of work. We will not do so here, in 
the interests of brevity, but merely point out that two 
factors play a role in such a proof. First, the region 
of integration in (2) is all of 'k-space, and this is invari­
ant under rotations of the coordinate axes in that space. 
Second, the volume element d(D)k is also similarly un­
changed under rotations of the axes. 

As a result of this rotational invariance, 'U,(D) (R, T) is ac­
tually a function of Rand T (where R == IRI, as already 
defined). The consequence of this is that we can choose 
the orientation of the axes in k-space according to our 
convenience, without affecting the result. 

TUrning now to the D = 2 case, it is evidently most 
convenient to work in plane polar coordinates, choosing 
the k1-axis along the vector R. Then 

(2) ( ) 1 00 
k dk sin CT k 1271' ikR cos 'P 

'U. ( R, T) = C () T -() 2 d'{J e 
o 27r k 0 

100 dk 
C ()(T) - sin (cTk) Jo(kR) (6) 

o 27r 

where Jo( kR) is the Bessel function of order O. The 
final integral over k is again a known integral, equal to 
(C2T2 - R2)-1/2 provided C2T2 > R2, and zero otherwise. 
Since we are concerned here with the physical region in 
which both T and R are non-negative, our solution reads 

1J,(2)(R,T) = C ()(T) ()(CT - R) 
27r y' C2T2 - R2 

(7) 

The signal thus reaches any point r only at time to + 
Ir - roll c, in accordance with causality and the finite 
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velocity of propagation of the disturbance. But once 
again, the signal is no longer a sharply pulsed one; it 
persists for all t > to + Ir - rol/c, although its strength 
slowly decays as t increases, like lit at very long times. 

The Case D = 3 

Something entirely different happens in three-dimensional 
space. We have 

(3) J d3
k sin crk ik·R 

7J. (R, r) = cB(r) -()3 e 
27r k 

(8) 

Rotational invariance is now exploited; we use spherical 
polar coordinates (k, B, r.p) in k-space, and, moreover, 
choose the polar axis along the vector R. This imme­
diately enables us to carry out the integration over the 
azimuthal angle ip, obtaining a factor 27r. It is useful to 
write out the subsequent steps in this instance, because 
they (or their variants) appear in more than one context 
in physical applications. 

c B( r) (OOdk k2 sin crk 11 d( cos B) eikR cos () 

(27r)2 10 k_1 

2cB(r) 100 

( ) 2 d k sin ( cr k) sin ( k R) 
27r R a 

c B ( r ) roo ( ) 
(27r)2R 10 dk cos (cr - R)k - cos (cr + R)k 

c B ( r ) 100 

( ) 2(27r)2 R _oodk cos (cr - R)k - cos (cr + R)k 

c B( r) Re 100 

dk (ei(CT-R)k _ ei(CT+R)k) 
2(27r)2 R -00 

cB(r) ( ) --Re 8(cr-R)-8(cr+R) . 
47rR (9) 

Bu t the delta functions are real quantities. And once 
again, we are interested in the region in which both r 

and R are non-negative. The solution therefore reduces 

In 0=3, almost 

miraculously, the 

signal is also a delta 

function pulse that 

reaches (and passes) 

an observer at any 

point r at precisely the 

instant to + tr - rol/c. 

There is no after­

effect that lingers on. 
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The propagation of 

sharp signals is 

possible in all odd­

dimensional spaces 

with D ~ 3, while it 

fails for all even 

values of D. 
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to 

Thus, almost miraculously, the signal is also a delta 
function pulse that reaches (and passes) an observer at 
any point r at precisely the instant to + Ir - roll c. There 
is no after-effect that lingers on, in stark contrast to the 
situation in D = 1 and D = 2. 

The amplitude of the pulse drops with distance like II R, 
exactly the way the Coulomb potential does. In fact, 
this is yet another unique feature of the solution in D = 

3. Formally, if the limit c -t 00 is taken in (1), the wave 
operator reduces to the negative of the Laplacian oper­
ator. We might therefore expect the solution for u.(r, t) 
to reduce to the corresponding Green function for - \7 2 . 

In three dimensions, this is precisely II (47r R). This fact 
is very familiar to us from electrostatics. The poten­
tial ¢(r) due to a point charge q located at ro satisfies 
the equation -\72¢(r) = p(r)/Eo = (qIEo) 8(3)(r - ro). 
With the boundary condition ¢ -t 0 as r -t 00, the so­
lution to this equation is just Coulomb's Law, namely, 
¢(r) = -ql(47rEoR), where R = Ir - rol. This reduction 
of the solution of the inhomogeneous wave equation to 
that of Poisson's equation in the limit c -t 00 does not 

occur in D = 1 or D = 2. 

Dimensions D > 3 

Now that we have appreciated a very important feature 
of three-dimensional space that is absent in one- and 
two-dimensional spaces, it is natural to ask if this feature 
is unique to D = 3. Surprisingly, it is not; the propa­
gation of sharp signals is possible in all odd-dimensional 
spaces with D ~ 3, while it fails for all even values of 
D. In other words, the signal received at any point r 
lingers on for all t > to + Ir - roll c in D = 2,4, 
while it is sharply pulsed, arriving and passing on at 
time to + Ir - rolfe with no after-effect, in D = 3,5, 
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There is, however, one feature that is absolutely unique 
to D = 3: this is the only case in which the original 
8-function pulse is transmitted without any distortion, 
namely, as a 8-function pulse. 

One way to establish these results is to start with (2), 
and to use hyperspherical coordinates in D dimensions. 
Then k = (k,01,(J2, ,OD-2, 'P), where 0 ~ k < 00 

o :::; Oi :::; 7r 0:::; 'P < 27r. Once again, we may choose 
the k1 axis to lie along the vector R, which permits us 
to carry out the integrations over O2, , 0 D-2 and 'P. 
The result is 

u(D)(R, T) = (const.) II(T) 100 

dk kD- 2 sin (cTk). 

(11 ) 

where the constant depends on D. Clearly, this is a 
laborious method of finding '/1,(D)(R, T), especially as the 
integrations over 01 and k have yet to be carried out. 

There is a more elegant and powerful way to solve the 
problem. This is based on the relativistic invariance of 
the wave operator and the solution sought. A detailed 
account of this would take us too far afield. We therefore 
restrict ourselves to a short description of this approach, 
to get some feel for the underlying 'mechanism' respon­
sible for the basic difference between the cases of even 
and odd D. Our discussion will not be fully rigorous, 
as we shall not pay attention to certain technical details 
that warrant a more careful examination. 

The operator (1/ c2) 82 / 8t2 - \72 can be verified to be 
unchanged in form ('invariant') under Lorentz trans­
formations in (D + I)-dimensional space-time. As a 
consequence of this invariance, the specific solution we 
seek can also be shown to be Lorentz-invariant. In the 
present context, this means that we can always evaluate 

o = 3 is the only 

case in which the 

originalt>-function 

pulse is 

transmitted without 

any distortion I 

namely I as a 8-

function pulse. 
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2 Once again, this is only true 

for a time-like or light-like four­

vector, but not a space-like one. 
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the integrals involved in (2) by first transforming to an 
inertial frame in which the four-vector (CT, R) has only a 
time-like component, i.e., it is of the form (CT " 0), where 
C2T2 - R2 = C2T ,2 [This can only be done for a so-called 
time-like four vector, i.e., one for which C2T2 - R2 > o. It 
cannot be done for a light-like four-vector (C2T2- R2 = 0) 
or a space-like four-vector (C2T2 - R2 < 0). This is the 
technical point we slur over, with the remark 'that our 
conclusions will not be affected by it.] After the inte­
grals required are evaluated, we can transform back to 
the original frame by replacing CT' with (C2T2 - R2) 1/2. 

We must also mention that T > 0 ilnplies T' > 0, be­
cause the sign of the time component of a four-vector 
remains unchanged under the set of Lorentz transfor­
mations with which we are concerned.2 Denoting the 
corresponding signal by 11, (D) (T '), we have 

,(D)( ') = B( ') J dDk sin CT I k 
11 T C T ()D 21T' k 

= (const.) B( T ') 100 

dk kD
-

2 sin (CT' k) (12) 

on carrying out all the angular integrals in D-dimensional 
space. The constant on the RHS in the last equation de­
pends on D. This representation shows us, in very clear 
fashion, how the cases of odd and even D differ from 
each other. When D is odd, the integrand is an even 
function of k, and hence the integral can be converted 
to one that runs from -00 to 00. The result can then be 
shown to be essentially a derivative of a certain order of 
the delta function 8 (C2T ,2), i.e., a sharply pulsed signal. 
(The order of the derivative increases with D.) On the 
other hand, when D is even, this cannot be done, and 
the integral leads to an extended function of C

2
T ,2 This 

dissection lays bare the precise mathematical distinction 
that lies at the root of the physical differences in signal 
propagation in odd and even dimensional spaces, respec­
tively. In fact, the formal solution for u(D) (T ') can be 
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shown to be essentially the derivative of order (D - 3)/2 
of 8 (C2T 12) in all cases. When D is even, this solution 
is a so-called fractional derivative, which is a non-local 
object - in physical terms, an extended function. 

The form of the result in (12) suggests even more. Since 
the second derivative of the sine function is again a sine 
function (apart from a minus sign), it follows that the 
solution in (D + 2) spatial dimensions can be obtained 
from that in D space dimensions by a simple trick. We 
find 

(13) 

This shows how the solutions in D = 5,7, can be gen-
erated from that in D = 3, while those in D = 4,6, 
can be generated from that in D = 2. The detailed 
working out of these solutions is left to the interested 
reader. 

A final remark, before we pass on to more general con­
siderations. How widely applicable are the conclusions 
at which we have arrived? Basically, there are two im­
portant additional aspects of wave or signal propagation 
that can be adjusted so as to modify the basic result. 
The first is dispersion. Sinusoidal waves of different 
wavelengths will, in general, propagate with different 
speeds in a medium. The precise manner in which the 
frequency and wavelength of waves in a medium are re­
lated to each other is called a dispersion relation. Such 
relations can be quite complicated. The second aspect 
is nonlinearity. The simple wave equation (1) that we 
have used, is linear in 1J,. On the other hand, physical 
situations often call for nonlinear equations. The in­
terplay between dispersion and nonlinearity can be ex­
tremely intricate and interesting, and a vast variety of 
new phenomena can arise as a result. Among these are 
the so-called solitary waves and propagating solitons, 
which represent very robust pulsed disturbances. 

The solutions in 

o = 5, 7, ... can be 

generated from that 

in 0=3, while those in 

0= 4,6, ... can be 

generated from that 

in 0=2. 

The interplay 

between dispersion 

and nonlinearity can 

be extremely 

intricate and 

interesting, and a 

vast variety of new 

phenomena can 

arise as a result, 

such as propagating 

solutions. 
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General Remarks on Dimensionality 

Is there anything else special about three-dimensional 
space that is not shared by a space of any other dimen­
sionality? Again, answers can be given at many levels. 
An important observation is that it is only in D = 3 that 
the cross product of two vectors is again a vector. For, it 
is only in D = 3 that the number of mutually perpendic­
ular planes spanning the space is equal to the number of 
Cartesian coordinate axes, 3 being the only nonzero so­
lution of the equation DC2 == D(D -1)/2 = D. Though 
these statements appear to be simple, they have pro­
found consequences. 

At a slightly more sophisticated level, we may make 
the following general, if rather loose, statement: one­
or two-dimensional space is, in some sense, too 'sim­
ple' for anything too complicated to be possible; on the 
other hand, four- or higher-dimensional space is again 
too 'roomy' for anything very complicated to occur. (In 
even more loose terms, this 'roominess' permits the un­

doing of complications like knots, for instance.) This 
leaves D = 3 as the most 'interesting' number of dim~n­
sions. Once again, we refrain from further elaboration. 

Finally, we must recognize that our sensory organs and 
the information processing hardware and software in our 
brains are designed so specifically for (3 + 1 )-dimensional 
space-time, that we literally take this dimensionality to 
be a fundamental and 'self-evident' fact of nature. In ac­
tuality, however, there are very deep unanswered ques­
tions about the nature of space and time. These ques­
tions are connected to questions about quantum .me­
chanics, general relativity and the origin of the universe. 
We do not know for sure whether, at the very smallest 
time scales and length scales, the number of space di­
mensions is three or more; or whether space-time coordi­
nates must be supplemented with certain other kinds of 
variables to specify a point in the 'true' arena in which 
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phenolnena occur; or even whether space-time is ulti­
mately continuous or discrete (,granular'). One thing 
does appear to be fairly certain, though: It is very prob­
able that. sooner or later, our long-standing ideas and 
preconceptions about the nature of space and time will 
have to be revised sign~ficantly at the most fundamental 
level. 
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The following poem written by Gamow and his wife described the debate 
on the steady state model of the universe. It mentions Martin Ryle's 
observations which could not be explained by this model, which was 
advocated by Fred Hoyle, Thomas Gold and Herman Bondi. 

"Your years of toil" 
Said Ryle to Hoyle 
''Are wasted years, believe me 
The steady state 
is out of date 
unless my eyes deceive me. 

My telescope 
has dashed your hope; 
Your tenets are refuted 
Let me be terse: 
Our Universe 
Grows daily more diluted!" 

Said Hoyle, "You quote 
Lemaitre, I note 
And Gamow, well, forget them! 
That errant gang 
And their Big Bang 
Why aid them and able them? 

You see, my friend 
It has no end 
And there was no beginning 
As Bondi, Gold 
and I will hold 
Until your hair is thinning!" 

"Not so!" cried Ryle 
With rising bile 
And straining at the tether; 
"F ar galaxies 
Are, as one sees, 
More tightly packed together!" 

"You make me boil!" 
Exploded Hoyle, 
His statement rearranging 
"New matter is born 
Each night and morn. 
The picture is unchanging!" 

"Come offit, Hoyle! 
I aim toloi! 
you yet" 
"And in a while" 
Continued Ryle 
"1'11 bring you to your senses!" 

From: 'Mr Tompkins in Wonderland' 
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