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The Weil Conjectures 

V Srinivas and Kapil H Paranjape 

We attempt an elementary exposition of the Weil 
conjectures. There are numerous references to ar­
ticles that have appeared earlier in Resonance which 
the reader might find useful to follow up. 

Diophantine Equations Modulo p 

One of the fundamental problems of number theory is to 
find integer solutions to a system V of polynomial equations 
in a number of variables: 

fl()(l"'.,)(n) 0 
f2()(1, ... ,)(n) 0 

Such problems go under the name Diophantine problems. (A 
famous exanlple is the Fermat problem [7] where one wishes 
to find solutions of )(r +)(2 -)('3 = 0 in integers for various 
choices of a positive integer n.) One can also ask for solu­
tions in other rings (i.e. 'number systems') such as solutions 
involving square roo~, cube roots, other algebraic numbers 
[6], real numbers, complex numbers and so on. A very im­
portant theorem called Hilbert's Nullstellensatz asserts that 
if the above system has any solutions at all (i.e. is con.si.s­
tent) then it has solutions in complex numbers. However, it 
is clear that finding integer solutions or indeed even proving 
their existence is much harder; there is actually a theorem of 
Matiyasevic that the existence of such solutions cannot be 
decided by an automated process (= algorithm = computer; 
see[4])! 

As a first step towards finding solutions in integer~, Gauss 
introduced the method of working modulo a prime number 
p. That is, we find substitutions Xi t-? ai for the variables 
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XI, ... ,Xn so that the values of 11, ... ,Ir become divisible 
by p; note that 0 is divisible by p. Now there is no need to 
distinguish those substitutions (ai) and (bi ) which differ by 
multiples of p (i. e. ai - bi = CiP) since this will not affect the 
divisibility of the values of Ij. Thus, we consider solutions 
in lFp, the field of integers modulo p (see Box 1). 

Now we have only finitely many values to substitute and 
check for the existence of solutions in lFp. Consider the 
equation 3X2 - y2 + 2 = O. By substitution of all possible 
values for X and Y from IF'a we see that this equation has 
no solutions in lFa; hence it has no solutions among integers 
either! On the other hand, the reader should be aware that 
there may be solutions modulo p without corresponding in­
teger solutions. As an example we consider the equation 
X 5 + y5 - Z5 = 0 which acquires a solution (1,1, -1) in the 
field IF'3 but has no solutions in integers of the form (a, b, c) 
with a, b, c all non-zero. 

Zeta Function of V 

One way of looking at an integer solution to a system V 
of polynomial equations is to think of it as a real or com­
plex solution which just happens to be an integer solution! 
Similarly, in order to solve equations in a field such as IF' p 
it is useful examine all solutions in a larger field and then 
( somehow) pick those which are actually in IF' p' 

Box 1. Finite fields 

The field IF' p can be thought of as follows. We consider the collection of integers 
{O, ... , (p -- I)}. We perform addition and multiplication in this collection by fol­
lowing the usual addition and multiplication operations by taking the remainder of 
divisjon by p. One interesting result is that subtraction and division by non-zero 
elements becomes possible. Thus IF p is an example of a finite field. 

Finite fields were first studied extensively by Galois. He showed that all finite fields 
are characterised by their size q which is a power pa of a prime number p. The 
(unique) field with q elements is then denoted by IF'q. If IF'q is contained in IF'ql then 
q' is a power qb of q; moreover, one can show that x t-+ xq preserves the addition(!) 
and multiplication operations in IF' q' Now a generalisation of Fermat's little theorem 
is the statement that xq = x for an element of IF'~ precisely when x is actually in 
IF'q. 
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A version of Hilbert's Nullstellensatz assures us that if the 
above system V has a solution in a field containing IFp then 
it has a solution in a finite field IF q containing IF p' The 
Frobeniu.s Inapping F : IF q~ IF q (see Box 1) takes solutions 
(aI, ... , an) of V into other solutions; moreover a solution is 
fixed (i. e. F(ai) = ai) precisely when it is a solution in IFp. 
Thus we are led to the study of the sequence of numbers 
ak = #(V(IFq)); the number of solutions of V in the field 
IFq where q = pk. 

The next step is a bewildering one for those (such as the 
authors) {lot sufficiently well indoctrinated in the philosophy 
of generating function.s. It suffices to say that through the 
study of a generating function it is easier to study the entire 
sequence {an} than it is to study the individual elements of 
it. 

Motivated by these ideas and analogies with the Riemann 
Zeta function, Hasse and Weil introduced the function 

called the Hasse-Weil Zeta function; here exp denotes the 
usual exponential function exp(x) = eX = ~~o xi Ii!. Since 
the number p is a prime that will be fixed for the rest of the 
discussion it is less cumbersome to discuss 

Zv(t) = exp (~(aktk)/k) 

so that (v(s) = Zv(p-S). 

Each system V represents an affine algebraic variety. When 
the equations are hOlllOgeneous, a constant multiple of a 
solution is again a solution; zero is also a common solution 
for these equations. Thus we can examine the associated 
projective algebraic variety W by examining the sequence of 
integers bk = (ak - 1) I (pk - 1.) and the associated function 

Zw(t) = exp (~(bktk)/k) 
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When we speak of the zeta function of an affine 'or projective 
variety, this is what we mean. 

Topology of Algebraic Varieties 

As mentioned above the system of equations V has 'enough' 
solutions over the complex numbers. We now digress to 
examine the geometry of this solution set V(<C) and present 
the geometrical part of Wei!'s motivation. 

V (CC) is called the complex analytic variety and each individ­
ual solution, a point of the variety. An algebraic condition 
(the Jacobian criterion) allows us to predict the existence (or 
lack thereof) of singularities ('kinks') in this complex variety. 
When there are no singularities we say the variety is smooth. 
Since the Jacobian criterion is algebraic, one can even check 
it for solutions over finite fields (where there is apparently 
no 'geometry' which leads us to this notion). Thus V is said 
to be smooth over lFp if the Jacobian criterion is satisfied at 
every solution in IF q for some q. 

We now restrict ourselves to the case of homogeneous equa­
tions and to the associated projective variety W by ignoring 
the zero solution and identifying solutions that are multiples 
of each other. 

Returning to the geometrical case, one shows that the smooth­
ness of the variety W makes W(CC) a manifold (see [2]) of 
dimension 2dw; where dw is an algebraically defined num­
ber called the dimension of W. Again, we note that we 
have a notion of dimension even when we are examining the 
solutions over lFq ! 

Poincare, Alexandroff, E Noether and others have defined 
the hom,ology groups Hi (W(<C ), CQ) and an intersection prod­
uct 

Hi(W(<C), CQ) x H2dw - i(W(<C), CQ) ~ CQ, 

so that there is a vector space basis {ei,k} of Hi(W(CC), CQ) 
with ei,k'e2dw-i,k = 1, where the (.) denotes the intersection 
product. The dimension of Hi (W(<C ), CQ), which is the size 
of the basis, is called the i-th Betti number of W(<C). 

~ ______ "AA~~A< ______ __ 
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Let F be a self-map of W (i. e. F is a way of producing 
new solutions from old ones). Lefschetz proved the following 
beautiful formula for the number L(F) of fixed points of F 
counted properly; L(F) is called the Lefschetz number. 

L(F) = ~ (-1)' ( ~ F(ei,k) e2dW - i,k) 

When F is the identity we obtain L(F) == X(W(<C)) the 
Euler characteristic of W(<C) (see [3] and [1]). 

Wei! looked at this circle of ideas and said 'if only'. If only 
these geometrical ideas can be extended to the study of the 
solutions over a finite field, then we can use Lefschetz for­
mula to count the number of solutions over 1F p since these 
are precisely the fixed points of the Frobenius map. Of 
course, this map is only for solutions in a finite field and 

·has no analogue for W(<C) but while making conjectures 
such 'minor' difficulties should be ignored! 

The Weil Conjectures 

We first state the conjectures. 

1. Rationality 

The Hasse--Weil Zeta function is a rational function, 

P(t) 
Zw(t) = Q(t)' 

where P(t) and Q(t) are polynomials with integer coeffi­
cients and constant term 1. 

2. Functional Equation 

When W is a smooth projective variety, 

where X is the Euler characteristic of W as above. 

--------~--------
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3. Factorisation 

When W is a smooth projective variety this conjecture re­
fines the above two. 

Z () 
- P1(t) ... P2dw - 1(t) 

w t - , 
Po(t) .. . P2dw (t) 

where Pi(t) are polynomials with integer coefficients and 
constant term 1, Po(t) = 1 - t and 

Here bi is the d~gree of Pi and is to be equal to the i-th Betti 
number of W as above. 

4. Weil's Riemann Hypothesis 

If a is a complex number so that J'i(a) = 0, then PI = q-i/2. 
Note that it follows from this that the J'i(t) have no common 
factors (since they have no roots in common) and so the 
factorisation is unique! 

Historical Remarks 

The Weil conjectures are stated in a paper in 1949. He 
had earlier proved these conjectures for the case of curves 
(dv = 1) and Abelian varieties by extending earlier results 
of Artin, Hasse and others. This paper contains a proof 
for the case of a single homogeneous equation of the form 
Li aiX[. Weil's computation for this case generalises one 
made by Hardy and Li ttlewood for the case ai = 1 in their 
paper on the Waring problem. 

The rationality of the zeta function was first proved by 
Dwork in 1960. All the conjectures except Weil's Riemann 
hypothesis follow in a 'formal' way from the existence of a 
suitable theory of homology groups so that the Lefschetz for­
mula can be applied. One such theory was Grothendieck's 
etale theory developed by him in collaboration .with MArtin 
and others. Another such theory is Grothendieck's crys­
talline cohomology. From this Grothendieck was able to 
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prove all the conjectures (except Weil's Riemann hypothe­
sis) in a more general setting than the one described in the 
article. Under the above restricted context an independent 
proof was given by Lubkin in 1968. 

Weil's Riemann hypothesis was first proved by Deligne in 
1973 by developing another topological idea of Lefschetz 
(called the weak Lefschetz theorem) in the context of the 
etale theory of Grothendieck. Deligne gave a second proof 
in 1980 which is perhaps more number theoretic. In the 
process of this proof the second part of Lefschetz topolog­
ical work (the hard Lefschetz theorem) was shown in the 
etale context. 

The Weil conjectures form the keystone to the further study 
of the topological and number-theoretical properties of va­
rieties in tandem. In 1969 Grothendieck proposed a vast 
program going under the title Motives. He set out some 
standard conjectures which would prove Weil's Riemann hy­
pothesis and much much more. Though Grothendieck's stu­
dent Deligne proved the Weil conjectures, the standard con­
jectures are as yet unresolved and the grand program of 
Grothendieck is yet to be completed. Truly, has Grothendieck 
seen further by standing on the shoulders of the giant Weil? 
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