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Kolmogorov-Arnold-Moser Theorem 
Can Planetary Motion be Stable? 

Govindan Rangarajan 

The contribution of Kolmogorov to classical mechanics 
is illustrated through the famous Kolmogorov-Arnold-
Moser (KAM) theorem. This theorem solves a long­
standing problem regarding stability in non-linear 
Hamiltonian dynamics. Various concepts required to 
understand the KAM theorem are also developed. 

Introduction 

Kolmogorov was a versatile mathematical genius who made 
important contributions to several areas of mathematics. One 
such contribution was the solution to a long-standing problem 
in classical mechanics. The problem concerns long-term stability 
in non-linear 11amiltonian systems (more on Hamiltonian 
systems later). Its solution is relevant to such important issues as 
the stability of our solar system etc. 

The genesis of the problem can be traced back to Newton. 

Newton was able to solve the equations that determine the 
motion of two bodies (say, the ~un and the earth) interacting 
with each other through the gravitational force. However, when 
he added a third body (say, the moon), he was unable to solve the 
corresponding equations determining the simultaneous motion 
of all three bodies. This is the (in)famous 3-body problem. 

We now rephrase the 3-body problem in a manner more suitable 
for our purposes. As noted above, the equations of motion for 
the 2-body system can be solved analytically (the system is said 
to be 'integrable'). When a third body is added, this can be 
considered as a 'perturbation' to the original, integrable 2-body 
system. We are interested in determining whether solutions to 
this 3-body system exist and whether they are close to the 2-body 
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solutions if the perturbation is small enough. This problem can 
be generalised to consider small perturbations to any 'integrable' 
system (not necessarily the 2-body system). 

Kolmogorov was the first to provide a solution to the above 
general problem in a theorem formulated in 1954 (see Suggested 
Reading). However, he provided only an outline of the proof. 
The actual proof (with all the details) turned to be quite difficult 
and was provided by Arnold and Moser (see Suggested Reading). 
The result they obtained is now popularly known as the 
Kolmogorov-Arnold-Moser (KAM) theorem. The significance 
of Kolmogorov's contribution is best summarised by the 
following comment by Arnold (see Suggested Reading): 'One of 
the most remarkable of A N Kolmogorov's mathematical 
achievements is his work on classical mechanics of 1954. A 
simple and novel idea, the combination of very classical and 
essentially modern methods, the solution of a 200-year old 
problem, a clear geometrical picture and great breadth of outlook 
- these are the merits of the work'. 

Needless to say, we will not even attempt to give the proof of the 
KAM theorem in this article. We will be content with merely 
stating the theorem and motivating the various conditions that 
appear in it. To do even this, we first need to understand various 
concepts like Hamiltonian systems, canonical transformations, 
integrable systems, action-angle variables etc. We will briefly 
delve into each of these topics in the run up to the KAM 
theorem. 

Hamiltonian Systems 

Hamiltonian systems form an important class of systems in 
classical mechanics. Our solar system is a prime example of a 
Hamiltonian system. In fact, any mechanical system without 
friction can be described as a Hamiltonian system. 

A Hamiltonian system with N degrees of freedom is charac­
terised by a single function H(q, p), called the Hamiltonian, 
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which is a function of the (generalised) coordinates q = (ql' q2' 

... ) qN) and (generalised) momentap = (PI' P2' ... , PN)· We have 
restricted ourselves to Hamiltonians which do not depend 

explicitly on time for the sake of simplicity. The coordinates 

and momenta together constitute the 2N-dimensional 'phase 

space' of the system. The evolution of these coordinates and 

momenta with time is given by the following Hamilton's 

equations of motion: 

dq. 8H 
_1 : _, i = 1, 2, ... , N, 
dt Op. 

1 

dp. 8H 
1 

dt : - 8q. ) i = 1, 2, ... , N. 
1 

(1) 

(2) 

Thus we have a set of 2N first order ordinary differential 

equations that have to be solved to obtain the desired time 

evolution of q and p. This can be done in principle once the so­

called initial conditions (the values of q and p at time t=O) are 

specified. 

Using the equations of motion, it can be easily seen that His 
constant in time for our time-independent Hamiltonian. One 

says that H is a conserved quantity. Quite often the value of the 

Hamiltonian corresponds to the total energy of the systeml . In 

such cases, the conservation of H is equivalent to conservation 

of energy. 

1 This is true if the equations 
defining the (generalised) co­

ordinates do not depend on 

time explicitly and if the forces 

in the system are derivable from 
As a simple example, let us consider the following one degree of a conservative potential. 

freedom Hamiltonian describing a particle of mass m moving in 

a potential V: 

Applying the Hamilton's equations of motion we get: 

dql 8H PI 
-:-:-

dt Opi m (3) 
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dP1 aH av 
-=--=--
dt ilzl ilzl 

(4) 

The reader may recall from high school physics that - (av/Oql) 
corresponds to the force F acting on the particle. Combining 
the above two equations we get 

where a denotes the acceleration. Thus, we have recovered 
Newton's second law of motion. 

We see that the Hamiltonian formalism does give expected 
results in cases such as the one described above. However, in 
more general settings, the formalism is a more powerful and 
elegant tool. In particular, it is very useful in developing 
perturbation theories (which we will come to soon). Furthermore, 
it provides some of the basic language used in constructing 
quantum mechanics and statistical mechanics. 

We now dig deeper into Hamiltonian mechanics. From the 
Hamilton's equations of motion it is easy to see that if H is a 
complicated function of q andp, then the differential equations 
also become quite complicated and difficult to solve. Therefore, 
it may be worthwhile to transform to a new set of coordinates 
and momenta (denoted by Q andP) such that the corresponding 
Hamiltonian is a simple function of this new set. However, one 
can not make any arbitrary transformation to new variables. 
The transformation that we make should respect the Hamiltonian 
structure i.e. equations of motion in the new variables should 
have the same functional form as before: 

df4 aH' . 
--=--, t = 1, 2, ... ,N, 

dt ap. (5) 
t 

d~ aB'. 
-=---, t = 1, 2, ... ,N. 
dt 0f4 (6) 
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Here H' denotes the transformed Hamiltonian in the new 
variables. Transformations which respect the Hamiltonian 
structure are called 'canonical transformations'. Henceforth, all 
variable transformations that we make would be restricted to 
such canonical transformations. 

Coming back to our problem, we would like to make a canonical 

transformation from (q, p) to (Q, P) such that H' is a simple 

function of Q and P. It should be so simple that one can solve 
the resultant equations of motion trivially. For some special 
Hamiltonian systems, the above goal can be achieved. One can 
canonically transform to a special set of variables called the 
'action-angle' variables (I,e) such that the transformed 
Hamiltonian is a function only of the N action variables I j • In 

this case, the equations of motion are easily solved: 

de. aH' . 
_1 = __ =w.(I) t= 1,2, ... , N. 
dt aI. 1 

(7) 
1 

dli aH' . 
-=---=0, t = 1, 2, ... , N. 
dt 00. (8) 

1 

Here Wj s are called the characteristic frequencies of the system. 
Solving the above equations we get 

ej (t) = ej (0) + Wj (I) t, i= 1,2, ... , N, 
Ij(t) = Ij(O), i=1,2, ... ,N. 

(9) 

(10) 

Thus the actions are constant in time and are said to be invariant. 
Furthermore, the motion does not occupy the full 2N­

dimensional phase space but is restricted to the N-dimensional 
surface of an N-torus and ej s are nothing but angles along the 
N independent loops2 on this torus (see Figure 1). The Wi s are 
the frequencies of rotation around these N loops and Ii s are 
related to the radii of these loops. Note that once the initial 
conditions qj (0) and Pj (0) are specified in the original variables, 
the canonical transformation completely fixes I j (0) and ej (0). 

Once Ii (O)=Ij (t)s are fixed, the torus on which the motion is 

2 - toru5 

..--91 

1- torus (circle) 

Figure 1. 

2 The N independent loops 

correspond to N closed paths 

that cannot be deformed into 

one another or to a pOint. 
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restricted to, is fixed. The torus is called an invariant torus. The 
frequencies of motion on this invariant torus are also fixed since 
these frequencies depend only on the invariant actions. The 
actual trajectory followed on this torus is specified by the values 
of 9j (0). The special Hamiltonian systems for which all of the 
above is realised are called 'integrable Hamiltonian systems' 3 • 

One can show that all one degree of freedom Hamiltonian 
systems are integrable. 

Kolmogorov-Arnold-Moser (KAM) Theorem 

A natural question that arises at this point is whether by making 
an appropriate canonical transformation (provided one is clever 
enough!) one can make all non-linear Hamiltonian systems with 
more than one degree of freedom integrable. By a non-linear 
Hamiltonian, we refer to a Hamiltonian which gives rise to non­
linear equations of motion. 

We start by restricting ourselves to the simplest case of a 
Hamiltonian system 'close' to an integrable Hamiltonian system 
in the following sense: The Hamiltonian H can be written as a 
sum ofa Hamiltonian Ho known to be integrable and a small 
additional piece E HI (where E is a dimensionless number 
assumed to be small) 

Such Hamiltonians are called 'near-integrable' Hamiltonians. 
Since Ho is integrable, one can make a canonical transformation 
to the action-angle variables (I, 9) such that Ho I is a function 
only of actions. However, HI' would still depend on both I and 
9. In these variables, -the transformed Hamiltonian H' is giv'en 
by 

H'(I, 9) = H' 0 (I) + E H'I (I, 9). 

If the perturbation is zero (i.e. E=O), we are left with only Ho'. 
Since this is integrable, the motion is restricted to the surface of 
an invariant torus for given initial conditions. If we now 'tum 

--------~--------
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on' the perturbation (6 ::1= 0), we want to investigate how the 
motion changes. Provided 6 is small enough, we would expect 
the motion to lie on a slightly distorted version of the original 
invariant torus. To show this, we have to make a canonical 
transformation to (1', Sf) such that the Hamiltonian H " in these 
new variables is a function only of 1'. Using the perturbation 
theory approach, we will attempt to do this only to first order in 
6 i.e. we will neglect all terms that contain higher powers of 6. As 
is shown in the Appendix, even this is not possible. We encounter 
small denominators and the desired canonical transformation 
diverges and becomes ill-defined. Consequently, we can not 
make the transformed Hamil tonian a function only of the actions. 

In light of the above, the situation appears hopeless as far as 
saying anything about the behaviour of even near-integrable 
Hamiltonian systems is concerned. It took Kolmogorov's genius 
to snatch a partial victory from the jaws of apparent defeat. 
Kolmogorov realized that the above roadblock was a result of 
trying to solve the problem for all possible initial conditions. If 
one excludes some problematic initial conditions, one can obtain 
precise albeit qualitative conclusions about the behaviour of the 
majority of trajectories. In particular, the problem occurs (refer 
to the Appendix) under the following conditions: Consider a 
torus (invariant under the integrable Ho) whose characteristic 
frequencies ffii satisfy the so-called 'resonant condition' m· ffi = 

o (for some integer vector m) 4. If one tries to investigate how 
this torus deforms when one turns on the perturbation, the 
canonical transformation diverges (since m ro occurs in the 
denominator of the relevant expression cf. sidebar). So we exclude 
all such torii (or equivalently, the corresponding initial 
conditions). Divergence problems can occur even if m· ro is not 
exactly zero, but close to it (the precise condition will be given in 
the statement of the KAM theorem below). So, such torii also 
have to be excluded. Fortunately, the size of the set of all such 
excluded torii is very small. Kolmogorov was able to show that 
the remaining 'non-resonant' torii only get slightly deformed 
when the perturbation is turned on provided the perturbation is 

4 The resonant condition is 

easier to understand for 2 

degrees of freedom. In this 

case, we have ml COl + m2co Z = 0 
for some integers ml and m2• 

This is equivalent to the 

condition that the ratio of the 

characteristic frequencies COl 

and co 2 is a rational number. 
Therefore, invariant torii for 

which this condition is satisfied 
are sometimes called 'rational 
torii'. 
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small. There is still one unsolved problem. Till now, we have 
kept only terms that are first order in E (terms proportional to E2 

etc. were discarded). What happens when we put back the 
higher order terms? By formulating a new type of perturbation 
theory called the 'super-convergent' perturbation theory, 
Kolmogorov was able to show that no further divergence 
problems occur even in this case. 

We are now in a position to state the Kolmogorov-Arnold­
Moser (KAM) theorem. 

Kolmogorov-Amold-Moser (KAM) Theorem: Consider an 
analytic N degrees of freedom Hamiltonian H(I,8) and let 

H =Ho(l)+E H 1(1,8) with 

fiB 
det __ 0 ;to. 

81.81. 
l J 

Then the torii of the unperturbed (E=O) integrable Hamiltonian 
Ho which satisfy the following inequality 

survive the perturbation (they merely get deformed)5. The set of 
torii not satisfying the above inequality is small and its size 
tends to zero as E ~ O. 

We will now motivate the various conditions that appear in the 
KAM theorem. We will restrict ourselves to 2 degrees of 
freedom for the sake of simplicity. We require H to be analytic 
since this is a key factor in ensuring the convergence of the series 
defining the canonical transformation 6. The condition on the 
determinant ensures that the characteristic frequencies COl and 
co2 are not independent of both the actions II and 12, This has the 
following consequence: At resonance (micol +m2 co2 = 0) we have 
already seen that we get into problems. In such a case, the 

--------~--------
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amplitude of motion starts increasing (Le. I starts changing). If 
the OOi s are independent of Ii s, the system continues to remain 
at resonance and the amplitude increases without limit. However, 
if the frequencies depend on the actions (as in our case), the 
frequencies start changing as I changes and the resonance 
condition m1 00 1 + mlool = 0 is no longer satisfied. The system 
'drops off' the resonance. Hence the excursion in I is limited. 
Therefore the bad effects of the resonant torii do not extend to 
the whole space. 

Next, we consider the condition I m1 00 1 +ml 0011 > K(E)/ 

(I mIl + I mll )3. Consider the torii whose characteristic 
frequencies do not satisfy this condition. In such cases, it can be 
shown using number theory that the ratio 00/001 is well 
approximated by rational numbers 7 Moreover, the number of 
torii which do not satisfy this condition (and hence are excluded 
by the KAM theorem) is proportional to K. Further, K goes to 
zero as E ~ O. Thus, for a small E (i.e. if the perturbation strength 
is small), the majority of the torii are merely deformed. What 
happens to the torii excluded by the KAM theorem? Using 
another theorem (the Poincare-Birkhoff theorem), it can be 
shown that they get destroyed by the perturbation and 'chaotic 
motion' develops in their vicinity. In chaotic motion, two 
trajectories that start close to one another diverge exponentially 
and the motion is not integrable. As the perturbation increases 
in magnitude, more and more torii get destroyed. Often, the 
torus whose ratio of characteristic frequencies is most badly 
approximated by rational numbers is destroyed the last! This 
ratio corresponds to the golden mean (5 1/1 - 1)/2 which is the 
most irrational number in the sense that its continued fraction 
expansion converges most slowly. In fact, the golden mean is 
also used by painters to determine the most aesthetically pleasing 
placement of the horizon in their paintings. Thus the most 
irrational number according to number theory is the most 
aesthetically pleasing ratio according to painters and also 
corresponds to the most stable configuration according to non­
linear Hamiltonian dynamics! 

7 It is well approximated in the 

sense that the continued frac­
tion expansion of the ratio 

either terminates after a finite 

number of terms or converges 

quite rapidly. 
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RESONANCE I April 1998 51 



GENERAL I ARTICLE 

Finally, we are in a position to answer the question with which 
we started this Section. From the above discussion it is clear 
that most near-integrable Hamiltonian systems are not 
completely integrable since motion is chaotic near resonant torii 
and therefore not integrable. However, the motion for the 
majority of initial conditions is integrable as a consequence of 
KAM theorem. Thus the phase space is a mixture of integrable 
and non-integrable regions with the former being in the majority. 
On the other hand, if E is large, KAM theorem no longer applies 
and most of the phase space could be non-integrable. In extreme 
cases, the whole of phase space is dominated by chaotic motion. 

To summarise, we hope that we have provided an example of 
Kolmogorov's enormous contributions to mathematics by 
studying the KAM theorem. Through this theorem, we have 
also attempted to give a glimpse of the field of non-linear 
Hamiltonian dynamics. 

Appendix: Canonical Perturbation Theory 

Consider the following Hamiltonian 

H'(I, a)= Ho'(l) + E H1'(I, a) 

where Ho' is the integrable part. We would like to perform a 
canonical transformation to a new set of action-angle variables 
such that the transformed Hamiltonian H" is a function only of 
the new actions l' to first order in E. The canonical 
transformations are usually performed using a 'generating 
function'. We will use the following generating function: 

S(I',a) = l' a + E SI(I',a). 

Here S I is yet to be determined. 

The relations between old and new variables are given by 

_ as a' _ as 
1- aa' - 81'· 

--------~--------
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Thus, 

as, as 
I = l' + E a 81 

, 8 = 8 + E' a I' 

We now substitute for (I, 9) in H' in terms of the new variables 
(1',8') using the above relations. Since we want the transformed 
Hamiltonian to be dependent only on I', we fix Sl by requiring 
that all 8' dependent terms in H' sum to zero (to first order in E). 

To obtain an explicit expression for Sl ' we express HI' and SI 
as a Fourier series in the angle variables 9i : 

H' I = L H1,m (I') exp (im 8 ), 
m 

SI = L Sl,m (I') exp (im 8 ), 
m 

(11) 

(12) 

where m is an N-component vector of integers. Using these 
series we obtain 

HI (I') 
S = iL ,m exp(im· 8) 

I m m·(O 

Here (0 is the N-dimensional vector of the characteristic 
frequencies which characterises an invariant torus of the 
integrable Ho'. If the infinite sum in the above expression for Sl 

converges, then we are done since the desired canonical 
transformation is given by the generating function S=So +E SI' 
However, the factor m (0 in the denominator gives rise to 
problems. For any (0, we can always find a m such that m (0 

is equal to zero or very close to zero. If this happens that 
particular term 'blows up' and the sum will not converge. Since 
the sum in the expression for S 1 runs over all values of m, we 
will always encounter such 'small denominators'. Thus the 
desired canonical transformation can not be carried out. 
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