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Recall from Resonance, Vol. 1, No. 7 that when the 
Drunkard asks: "Will I ever, ever get home again?", 
Polya answers: "You can't miss, just keep going and 
stay out of 3D!" In this two-part article we show how 
to look at this question of recurrence and transience 
of random walks (which was originally asked and 
solved by George Polya) through electrical networks. 
In the first part we look at the related electrical 
networks. 

Reticulated Resistors 

Suppose n resistors are placed in a. series as in Figure 1. 
Each resistor is of magnitude r ohms and between the two 
ends of this series we apply a potential of 1 volt. 

We evaluate the voltage v (k) at the point k in the circuit. 
By Ohm's law, if a resistor of r ohms is placed between two 
points x and y then the current, izy, flowing from x to y is 
v(z);"'(ll). Also by Kirchoff's law, the current flowing out of 
x equals the current flowing into x. Thus w~ have for our 
circuit in Figure 1, for every k = 1,2, ... , n - 1, 

1 volt 

n 
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v{k + 1) - v{k) v{k) - v{k - 1) -
r r 

which yields 

(1) 

Moreover, since the point 0 is grounded, we have at the 
endpoints 0 and n, 

v{O) = 0 and v(n) = 1. (2) 

These equations may be solved explicitly to yield 

v (k) = k / n for k = 0, 1, 2, ... , n. (3) 

Instead of connecting the resistors in a series, let us consider 
the circuit as in Figure 13. 

Here the boundary is 'shorted', with the South-Eastern part 
of it grounded and shorted separately from the rest. We 
place resistors, each of r ohms, in the interior of the grid. 
If (k, I) denotes the coordinates of a point on the grid and 
v{k, I) the voltage there, then application of Ohm's law and 
Kirchoff's law gives 

Figure 2. 
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_v { __ k_+_l_, l ...... )_-_v ..... {k_, ...... l) + v{k, 1+ 1) - v{k, I) = 
r r 

v{k, I) - v{k - 1, l) v{k, I) - v{k, l - 1) 
------------- + , r r 

which yields 

( ) 
v{k + 1, I) + v(k - 1, I) + v(k, I + 1) + v{k, I - 1) 

v k, I = 4 . 

(4) 
Also we have the boundary conditions 

v(k, /) = { ~ for (k, I) on the South-Eastern boundary 
for (k, I) on the 'upper' boundary. (5) 

These equations can be solved explicitly to yield 

(.9464, .9018, .9107, .8839, .7500, .7411, .8393, .4732, .3036), 

where, Va, vp, VA, vB, ... , vI represent the voltages at the 
points a, {J, A, B, ... ,Ion the grid (as labelled inFigure 12). 

We have till now dealt with resistors in series or on a 2-
~imensional (planar) grid. The reader can easily verify for 
herself that we can set up similar equations for 3 or higher 
dimensional networks. 

Conductance and Current 

In this section we introduce the notion of conductance and 
current. Let x and y be two vertices in an electrical network 
and let < x, y > denote the edge between these two vertices. 
Suppose Rxy is the resistance between x and y and v(x) and 
V (y) are the potentials at x and y respectively. 

The conductance C xy of the edge < x, y > is defined as 
Cxy = 71;;. The conductance Cx of the vertex x is defined 
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as C:z; = E"z C:z;z, where the sum is over all vertices % which 
are adj acent to the vertex x. 

The current i:z;y from x to y is defined as ixy = V(xt;(1I), 

and thus, 
i:z;y = (v(x) - v(y))C:z;y. (6) 

Now Kirchoff's law states that at any point x in the interior 
of the circuit (e.g. in Figure ~ at any point other than 
a, f3) Ey i:z;y = 0, the sum being over all vertices y which are 
adjacent to the vertex x. Thus by (6), Ey { v(x) -v(y ))C:z;y = 
o and hence 

C 
v{x) = E v(y) C:z;y. (7) 

y x 

The sums above are over all vertices y adjacent to the vertex 
x. 

At the boundary points a and f3 of an electrical circuit, the 
current iO/ flowing into the circuit is given by iO/ = Ex iO/x, 
the sum being over all vertices x adjacent to the vertex a. 
Moreover, since the current flowing into the system equals 
the current flowing out of the system we have if3 = -iO/ 
where i f3 = Ex i f3x and the sum is over all vertices x adj acent 
to the vertex f3. 

Now consider two circuits, one with boundary points aI, 
f31 and the other with boundary points a2, P2 such that 
v{at} = v{(2) = 1 and V(f3I) = V(f32) = 0 (i.e. f31 and 
f32 are grounded). Suppose the first circuit consists of a 
network of resistors between al and PI, while the second 
network consists of only one resistor of magnitude R ohms 
between a2 and f32. If i0/1 = i0/2 , i.e., the currents flowing 
into the two networks are the same, then from (6), 

v(a2) - V(f32) 1 1 
R= =-=-. 

i0/2 i0/2 i0/1 
(8) 

Since the currents flowing into both the circuits are the same, 
the currents flowing out of the two circuits must also be the 
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D 

same, thus the effective resistance p of the first circuit must 
equal that of the second circuit, Le., p = R, and, by (8), 

v(al) 1 
p=--=-. 

i Q1 i Q1 

(9) 

Another way of calculating the effective resistance of a cir
cuit is the one we learnt in high school, viz. two resistors of 
magnitudes rl and r2 ohms 
(a) connected in a series have an effective resistance of rl +r2 
ohms, 
(b) connected in parallel have an effective resistance of 1/( /1 + 
r;) ohms. 

To:wards Infinity 

Suppose resistors, each of r ohms, are placed in a series as in 
Figure 3, with the vertices nand -n shorted and grounded 
and a potential of 1 volt applied between 0 and the shorted 
'boundary' n. This circuit is clearly equivalent to the circuit 
in Figure 4. 

-2 

2 

1 volt 
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n 

-n 

1 volt 

A simple calculation shows that the effective resistance Pn 

between 0 and n is ~r. Clearly, Pn -+ 00 as n -+ 00. In 
other words, if a sequence of resistors is placed in a series 
with the series extending to infinity on both the left and the 
right sides, then the effective resistance between 0 and 00 is 
infinite. 

The equivalent problem for 2-dimensions is illustrated in 
Figure 5. 

We place resistors each of r ohms on a grid of size 2n x 2n 
centred at the origin 0 with the boundary of the grid shorted 
and grounded. We connect the origin 0 and the shorted 
boundary to a potential of 1 volt. Let Pn be the effective 
resistance of this circuit. As in the I-dimensional case we 
will show that in this case too Pn -+ 00 as n -+ 00. 

However, unlike in I-dimension it is extremely difficult to 
obtain an exact expression for Pn. Indeed, we are also not 
interested in knowing the exact value of Pn, but only in show-

. Figure 5. 
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n 

-n 

1 volt 

ing that Pn ~ 00 as n ~ 00. To this end we begin by 
simplifying our work and consider the circuit as in Figure 6. 

Here we short the boundary of each of the subsquares Bk-l 

of size k x k, k = 2,3, ... ,2n, centred at the origin 0 and 
connect res~tors of r ohms each at the remaining edges of 
the grid. A)potential of 1 volt is again applied between the 
origin 0 and the outermost shorted boundary. 

But shorting an edge is equivalent to putting a resistor of 
o ohm between the vertices comprising the edge. In other 
words, the consequence of shorting is just to reduce the ef
fective resistance of the circuit. Hence if P~ is the effective 
resistance of the circuit in Figure 6 and· Pn is the effective 
resistance of the circuit in Figure 5, then 

I 
Pn ~ Pn· (10) 

The circuit in Figu.re 6 is equivalent to the circuit in Figure 7, 
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o ~::::::===~n 

4 resistors 
in parallel 

12 resistors 
in parallel 

1 volt 

.20 resistors 
in parallel 

where we have replaced each of the boundaries of the boxes 
Bk by a vertex k. 

We observe that in the equivalent circuit (Figure 7) there 
are 4 resistors in parallel between 0 and 1, 12 resistors in 
parallel between 1 and 2, 20 resistors in parallel between 2 
and 3, and in general, 8k - 4 resistors in parallel between 
k - 1 and k. Clearly the effective resistance of the 8k - 4 
resistors in parallel between k - 1 and k is r / (8k - 4) and so 
the effective resistance P~ of the circuit in Figure 6 satisfies 

n 

p~ = E 8 ~ 4 -+ 00 as n -+ 00. 
k=l k 

Thus, from (10) we have for the circuit in Figure 5, Pn -+ 00 

as n -+ 00. 

The situation in 3 or higher dimensions is significantly differ
ent. Here we short the boundary of a cube of size 2n x 2n x 2n 
centred at the origin 0 and at each edge of the grid in this 
cube we place an r ohm resistor, while the shorted bound
ary is grounded. We apply a potential of 1 volt between the 
origin 0 and the shorted boundary. In this case we will show 
that the effective resistance Pn of the circuit does not go to 
infinity, instead we show that the effective resistance of the 
infinite grid in 3 or higher dimensions is finite. 

Recall that in our argument for the 2-dimensional grid we 
first reduced the problem (Figure 5) to a simpler problem 

Figure 7. 
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(Figure 6) by shorting the boundaries of BI, B2, ... , which 
ensured that the effective resistance P~ of the circuit in Fig
ure 6 is less than the effective resistance Pn of the circuit 
in Figure 5. This method of shorting will not work in 3-
dimensions. Indeed if we show the effective resistance of a 
simplified circuit obtained by shorting is finite, it will not be 
sufficient for our purposes because the effective resistance of 
this simplified circuit is less than that of the original circuit 
and hence it could still be the case that the effective resis
tance of the original circuit is infini~e. Thus the finiteness of 
the effective resistance of a simplified shorted 3-dimensional 
grid does not imply the finiteness of the effective resistance 
of the 3-dimensional grid. 

However all is not lost! Instead of shorting (i.e. connecting 
with a wire of zero resistance) we may remove an edge of 
the grid (i.e. connect with a wire of infinite resistance). 
If we were to do this then the 'simplified' circuit will have 
an effective resistance more than that of the original grid. 
Thus to establish the finiteness of the effective resistance of 
a three dimensional grid, we need to construct a suitable 
circuit from the original grid by removing edges and show 
that this simplified circuit has finite effective resistance. 

The simplified circuit we employ is first described in 2-
dimensions. (The reason for doing this is just that it is easier 
to draw 2-dimensional pictures!) We start from the origin 
o and draw two lines - one going up and the other going 
to the right (see Figure 8). As soon as either of these lines 
meet the line x + y = 2n - 1, n = 1,2, ... , it bifurcates into 
two lines - one going up and the other going right, which 
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in turn bifurcate when they meet the line x + y = 2n ~ 1. 
We continue this method of connecting edges between the 
vertices of the 2-dimensional grid. In the electrical network, 
each edge corresponds to a r ohm resistor and so each of 
these lines consists of a string of r ohm resistors in series, 
and we ensUre that except at the point of bifurcation two 
distinct strings of resistors are not connected. 

It is immediately clear that the effective resistance of this cir
cuit is more than that of a two dimensional grid because not. 
connecting two points by a resistor is equivalent to putting a 
resistor of infinite magnitude between the two points. This 
clearly increases the effective resistance of the resulting cir
cuit. Thus the effective resistance of the circuit in Figure 8 
is more than that of the 2-dimensional infinite grid. 

By redrawing the circuit in Figure 8 and following each 
string of resistors we see that Figure 8 is equivalent to the 
tree in Figure 9. 

It is easy to calculate the effective resistance of this tree by 
observing that the symmetry of the tree ensures that each of 
the 2k points in generation k have the same potential and so 
we can connect each of these 2k points without changing the 
effective resistance of the circuit. Hence the tree in Figure 9 
is equivalent to the circuit in Figure 10. 

Generation 0 Generation 1 
T 

Generation 2 
Figure 9. 
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2 reslston 
in parallel 
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4 strings of 
1 reslston each 
In parallel 

1 Voll 

8 strings of 
4 reslJton each 
In parallel 

lnstrlJigs of 
n-l 

1 rmston 
each in parallel 

A -simple calculation now shows that the effective resistance 
p~ of this circuit upto generation n is ~r which goes to 
infinity as n ..... 00. This is, of course, not surprising because 
we had already noted earlier in Figure 7 that the effective 
resistance of the 2-dimensional grid is infinite. 

We will do a similar construction for 3 dimensions. We will 
not attempt to draw a figure here because this page lacks 
a dimension necessary to do justice to a figure and so we 
describe the procedure in words. We start from the origin 
and draw 3 lines going along the x, y and z axes respectively. 
When any of these lines meet the plane x +y + z = 2n -1 (for 
some n = 1,2,3, ... ) it bifurcates into three lines - one going 
parallel to the x axis, another going parallel to the y axis and 
the third going parallel to the z axis - each of which in turn 
bifurcate when they meet the plane x + y + z = 2n -1 (for 
some n = 1, 2, 3, ... ). We continue this method of connecting 
edges between the vertices of the 3-dimensional grid. In 
the electrical network, each edge corresponds to a r ohm 
resistor and so each of these lines consists of a string of r 
ohm resistors in series, and we ensure that except at the 
point of bifurcation two distinct strings of resistors are not 
connected. 

Again, redrawing the circuit obtained by the above proce
dure and following each string of resistors we see that this 
circuit is equivalent to the tree in Figure 11. 
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The effective resistance can be calculated for this tree by 
observing that each of the 3k vertices at generation k have 
the same potential and hence we can connect each of these 
3k vertices. The effective resistance p~ of this circuit upto 
generation n is 

r r r r 2 n - + "9 + 2f + ... + 3" = [1 - (-) ]r, (11) 
3 ~ T 2n - i 3 

which goes to r as n -+ 00. 

Since the 3-dimensional grid has an effective resistance less 
than or equal to that of the above simplified circuit, it has 
an effective resistance of at most r. 

For dimensions d > 3, note that by removing all resistors 
from d - 3 dimensions we obtain a 3-dimensional grid whose 
effective resistance we know to be finite. Since removing all 
resistors from d - 3 dimensions is equivalent to substituting 
each of these resistors by 00 ohm resistors, we see that the 
effective resistance of a d-dimensional grid is always less 
than or equal to that of a 3-dimensional grid. Hence the 
effective resistance of a d-dimensional grid is finite for all 
d ~ 3. 
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The goal of science is to build better 
mousetraps. 
The goal of nature is to build better 
mice. 
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