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In Part 2 of this series, we saw how dual vectors arose very 
naturally even in elementary vector analysis. At the end 
of that article, I stated that dual vectors and the reciprocal 
basis were very far-reaching concepts. They appear in 
many different contexts, some of which will be described 
in the sequel. In this part, we begin with a situation that 
might appear to be simpler than the case worked out in 
part 2 but we are in for a surprise! 

Reciprocal Basis in Two Dimensions (2D) 

Let us recall briefly the essential result found in part 2 of this 
series: given any three non-coplanar, i.e., linearly independent 
vectors ( a, b, c) in the familiar three-dimensional or 3D Euclidean 

space, the reciprocal basis comprises three vectors (A, B, C) such 
that A . a = B . b = C c = 1, while A· b = A· c = B a = 

B . c = C a = C . b = O. The three vectors (A,B, C) are found 
to be given by 

A- bxc B _ cxa c- axb 
-V' -V' -V' (1) 

Here V is the scalar triple product (a x b) c; its modulus 
is the volume of the parallelepiped formed by ~ band c as 
in Figure 1. The expressions in (1) have a pleasing cyclical 
symmetry. 

We now ask: what about the simpler case of two dimensions, 
i.e., a plane? Here we have two vectors a and b that are not 
parallel or antiparallel to each other (Figure 2). We want to find 
two other vectors A and B in the same plane such that 

A a = B b = 1 while A b = B a = 0 (2) 
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This is easily done if we regard a and b as defining the 
directions of a pair of oblique axes in the plane; then A and B 

must be linear combinations of the form 

(3) 

The four constants 0. 1 ' ~1' 0.2 '~2 can now be found by taking 
the dot products of A and B with a and b in turn, and using 
the values given by (2) for these quantities. This involves 
solving four simultaneous equations, which is a bit tedious, 
although quite straightforward. Is there a simpler, shorter way? 
We must not accept the following erroneous argument: 

"Since A· b=O, A 1- b. Similarly B· a =0 ,so that B 1- a. Hence 
A cannot have a part proportional to b, i.e., ~1 = O. Similarly 
0.2 == 0 This leaves only the two constants 0.1 and P2 to be 
determined. " 

Such an argument is only valid if a and b are mutually per­
pendicular! If a and b are not perpendicular to each other, then 
A b = 0 does not imply that A is directed along the other 
axis, namely, a: since a itself has a perpendicular projection 
along b, A cannot be directed exclusively along a. It must have 
a compensating piece proportional to b as well, so that its net 
perpendicular projection on b is zero. 

But there is a way to find A and B by solving just two equa­
tions, rather than four. Any arbitrary vector v in the plane can 

, .... 1"----- --;"-1 
,.. I .. " I -- --l _ ____ .,'* 

I I " I I , , I , ' , 
I I I 

, , f 

I I ' , I -----r --,-,.J 
",....-a--~' ..... ' 

Figure 1 

be expanded in the form Figure 2 

(4) 

Now let us recall from part 2 of this series that the objects a A 
and b B also serve as projection operators that add up to the unit 
operator i.e., aA + bB=1. This is entirely equivalent to saying 
that, for any arbitrary vector v, 

v = I v == a (A v) + b (B v) (5) a 
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In other words, c1 = A . v and C 1 = B . v. Taking the dot pro­
ducts a v and b v in succession in (4), we get two simul­
taneous equations for c} and c1 • Solving these, we get cI and c

1
• 

We can now simply identify A and B from the expressions for 
c] and c1 exploiting the fact that C 1 = A v, C 1 = B . v. The 
result is 

where a1 = a a and b2 = b . b 

Although these expressions are not too complicated, they are 
not too simple, either. Nor do they have the elegant cyclically 
symmetrical form of the expressions in the 3D case, equations 
(1). This is quite surprising, because we should expect the 
answer in 2D to be actually simpler than that in 3D! In particular, 
the denominator a2 b2_ (a . b)2 in (6) is of second order in a and 
b, while the denominator V in (1) is of first order in a, band 
c. The 2D analogue of the volume V of the parallelepiped 
formed by (a, b, c) in 3D is the area - a x b - of the 
parallelogram formed by ( a, b). We should therefore expect this 
area to appear in the denominator in the formulas for A and B. 
The problem, however, is that it is not possible to have a vector 
or .cross~product of two vectors in 2D space, i.e., for vectors 
living strictly in a plane! More precisely: if(al' a2 ) and (bI' b2) 

are the components of the 2D vectors a and b, the cross product 
I a X b' only has one component, al b2 - a2bl , instead of the two 

needed to make a 2D vector. This i~ the root of the difficulty. 

But now we notice something interesting. The square of a] b1-

a2bI is just a2b1 - (a· b)2, remembering that a2 = a; +a~ and 
b2 = b: + b~ ! And if A and B are written out component-wise, 
a factor al b2 - a2 bi cancels out in each case, and we get: 

b
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(7) 

These expressions do show (at last!) a sort of cyclic symmetry: 
Let us compare them with what happens in 3D, equations (1). In 
that case we have 

(b2c
3 

- b3c
2

) (b3c1 - b1 c3 ) (b1 c2 - b2c1) (8) 
Al = V ' A2 = V ' A3 = V 

where 

V = a (b X c) 

= al (b2c3- b3c2) + alb3cl - blc3) + alb lc2- b2cl ), (9) 

and similar expressions for the components of Band C. What 
is the common feature of the denominators in (7) and (8)? In 
each case, we have simply the determinant formed by writing 
out the basis vectors in component form, one after the other, i.e., 

I aJ 
b

1 
a21 or I aJ 
b

2 
a

2 
hJ I b

2 
in 2D ; 

(10) 
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(11) 

This is the vital clue - the hidden pattern is now sufficiently 
revealed for us to guess the complete answer in an arbitrary 
number of dimensions! To do that, it is first necessary to 
introduce an important symbol and a convenient bit of notation. 

c
1 

c
2 

c
3 

a
3 

b
3 

c
3 

Levi-Civita's Symbol and Einstein's Convention 

We shall use the subscripts i, j, k, ... to denote the various 
components of a vector - e.g., ai stands for the i th component 
of the vector a . Here the subscript or index i can take on values 
1 or 2 in 2D; 1,2 or 3 in 3D; and 1, 2, .. , or n in nD. 

Now consider the set of 22= 4 quantities denoted by Eij in 2D, 
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and defined as follows: E12 = + 1 , E21 = -1, Ell = E22 = 0 Its 
counterpart in 3D is Eijk , defined as follows: 

{ 

+ 1, if ijk is an even permutation of 123 
E

jik
::; -1, ifijk is an odd permutation of123 

0, in all other cases (12) 

(A permutation of 123 is even [or odd] if it is made up of an even 
[or odd] number of interchanges of two indices at a time.) Thus, 

of the 33 = 27 quantities E" k , we have E12 = E = E = + 1 I) 3 312 231 , 

E 213 = E 321 = E 132 = -1 , while the remaining 21 quantities are 
zero. (It is evident that Eijk is zero whenever at least two of the 
indices take on the same value, such as E or E ) The 112 333 • 

generalization to 4,5, ... n dimensions is immediate! In n 
dimensions, the indices ~j, k, 1, ... can take on values from 1 to 

n. Then 

E ijk1 ... = 

+ 1, if ijkl .. , is an even permutation 
ofthe natural order 1234 ... n 

-1, if ijkl '" is an odd permutation 
of the natural order 1234 ... n 

0, whenever any two indices are equal. 
(13) 

E ijk ... is called the Levi-Civita (or totally anti symmetric) symbol 
in n dimensions. We shall see its great utility shortly. 

Among other uses, the Levi-Civita symbol helps us write down 

the volume of the parallelepiped formed by the basis vectors a, 
b ... in any number of dimensions, i.e., the value of the determi­
nant formed by the components of the vectors. We see at once 

Tullio Levi-Clvita (1873-1941), Mathematician 

Abraham Pais, in his superb biography of Einstein ( Subtle is the lord ... ), from which the quotations 

here are taken, speaks of " a noble line of descendence" in the works of Gauss, Riemann, Christoffel. 

Ricci and levi-Civita, one of whose culmination points was Einstein's General Theory of Relativity (GTR). 

In 1917, levi-Civita introduced in a mathematically rigorous manner the concept of parallel transport, 

a fundamental notion in tensor calculus and differential geometry\. His correspondence with Einstein 

early in 1915 helped Einstein in his final formulation of GTR later that year - he was "happy to have finally 

found a professional who took a keEm interest in his work" , and in a grateful letter to levi-Civita, said, 

... "It is therefore doubly gladdening to get to know better a man like you". 

_______________ LAA~AA, ______________ _ 
12 vVVVvv 
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2 2 

(a1b2 -ail) = I I Ejjajbj 
j=1 j=l 

333 

V=a.(bxc)=I I I Eij1eajb/k 

(14) 

i=l j=l k=l (15) 

The notation is simplified considerably if we adopt a convention 

- namely, to agree that if an index is repeated (Le., appears twice 
in any expression), it is automatically summed over all the values it 

can take. This summation convention was introduced by Einstein 
himself in 1916. Besides reducing considerably the 'clutter'in 
mathematical expressions, it has a great advantage. It gives us 
a way of making an important consistency check on calculations 
involving tensors: every index symbol that appears once on the 

left-hand side of any equation must do so on the right-hand side 
as well; any index symbol that appears twice in an expression is 

a 'dummy index', to be summed over all its possible values; and 

Einstein's Summation Convention 

Mathematical notation is generally regarded as a trivial matter. It is often so - and yet, proper notation 

is so essential for clear understanding! And there are some striking instances when adopting a good 

notation has helped vitally in the development of the subject. Newton, when he invented (discovered?!) 

the differential calculus - which he orginally called 'fluxions' - used 9, y, ... to denote successive 

derivatives. It is easy to see that this notation rapidly leads to problems with higher order derivatives, 

partial derivatives and so on. In contrast, to quote E T Bell in Men of Mathematics, " ... the more 

progressive Swiss and French, following the lead of leibniz, and developing his incomparably better way of 

merely writing the calculus, perfected the subject ", and thus made it a "... simple, easily applied 
implement of research ... ". 

Two other instances come to mind in which a happy choice of notation even acts as an automatic check 

against mistakes: Dirac's bra and ket notation for linear vector spaces, which we introduced in part 2 of this 

series; and the Einstein summation convention in tensor analysis. Of an index symbol appears twice in an 

expression, it is to be summed over all its allowed values. If it appears more than twice, there's a mistake 

somewhere !) Einstein himse,lf appears to have been pleased with his innovation, for he jested to a friend 

that he had -made a great discovery in mathematics; I have suppressed the summation sign every time that 

the summation must be made over an index that appears twice ... - ! 
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no index symbol can appear in any expression more than twice. 
In n -dimensions, therefore, the volume of the (hyper-) 
parallelepiped formed by the basis vectors a, b, c, d, ... is simply 

E "kl a. b. ck d1 ••• 
I)... I) 

(16) 

where each subscript must be summed over from 1 to n 

A remark : in the special case of three dimensions, and only in 
this case, is the definition of Levi-Civita symbol given in (12) 
entirely equivalent to saying that Eijk '= + 1 if ijk is 123 or a 
cyclic permutation of 123; Eijk = -1 if ijk is 132 or a cyclic 
permutation of 132; and Eijk = 0 in all other cases. Indeed, this 
is the definition given in some books. While it is correct, it can 

be misleading, because it cannot be extended as it stands to any 

other dimension, including two dimensions (E 12 = + 1 , but 
E2l = -1 although 21 is a cyclic permutation of 12). The correct 
general definition is that in (13). 

Again, it is only in 3D that the cross-product of two vectors is itself 

a vector (I will qualify this remark later on, in Part 4, in the 

interests of technical accuracy!) It is easy to check that the (k th 

component of the vector formed by the) cross-product of two 

vectors a and b in 3D is just Eijk ai bj - this quantity has pre­
cisely one 'free' index (namely, k ), as required by a vector. On 
the other hand, in 2D we have E .. a. b. which has no free index 

I) 1 J 

left at all, and is thus a scalar; while in more than 3D we have 

E iikl ... a j b
i 

which has two or more free indices (k,l, ... ), and 
hence denotes a 'tensor' of rank 2 or more. Since any two (non­
collinear) vectors define a plane, a geometrical way of saying all 
this is as follows: in n -dimensional space, we have n independent 
directions and nC2 = n (n -1)/2 independent planes. Only in 3D 
are these two numbers equal to each other! This is one of the 
main reasons why 3D is so special. 

We have now set up all the machinery needed to find the 
reciprocal basis in an arbitrary number of dimensions. This will 
be our first task in the final part 4 of this series. 

1 
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