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The problem of a mathematician who walks from her 
home to her office and changes her mind repeatedly 
during this walk is discussed. Stochastic generalizations 
of this problem can be used to model many real-life 
situations. 

The Deterministic Version 

A mathematician starts walking from her home to her office. 
Halfway through she changes her mind and starts returning 
home. Again halfway through that she changes her mind and 
starts walking towards her office. Once again halfway through 
that she starts returning home and so on. The problem is to 
determine what happens to this vacillating mathematician. 

Identifying the mathematician's home as the point zero and her 

office as the point one we can formulate a sequence {Xn} ~ (Xn 
denoting the position at the n th change point) of numbers in the 
interval [0,1] that satisfies the following simple rule: 

Figure 1 
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] 
(1) 

(l-X2n) 
Clearly, X2n+l = X 2n + for n ~ 0 

2 

Letting Un = X 2n-l ,Vn = X 2n we see that 

Un+1 = Vn(~) +~ 

=(~) Un +~ forn~l (2) 

This is known as a first order difference equation. To solve this 
iterate the equation to get 

=(~)2 U 1 +~.~+~ 
4 n- 4 2 2 

=(~)3 U 2 +(~)2 ~+(~)~+~ 
4 n- 4 2 4 2 2 

It is easy to guess from the above and also establish by induction 

that 

(l)n n-l (l)(l)j 
Un+l ; 4 U l + ~ "2 4 (3) 

Since 0 ~ U
I 
~ 1, (~) n U

I 
~ 0 as n ~ CL:J. Also the geometric series 

partial sum sequence 

~e-w-r -> (~~ =~. 
o 2 4 1-"4 3 

n 

(Recall that La rj ~ l~r for I r I < 1)· Thus Un ~ 2/3 and since 
o 

Vn = X 2n = 1/2 Un it converges to 1/3. 
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Eventually, our mathematician 
will just be hopping in the 
vicinity of 1/3 and 213. 

Figure 2 
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So our mathematician's position at odd numbered change points 

is non~ecreasing (note th,JiU2 = 5/8 is > U I = 1/2 and Un +I -

Un = "4 (Un- Un -1) = (±) (U2 - UI ) > 0) and converges to 
2/3. Similarly Vn is also nondecreasing and approaches 1/3. 

If 0 < Xo < 1 then the above arguments are still valid and the 

limits are the same. However, ifXo > 1/3 then Un and Vn would 
both be decreasing to 2/3 and 1/3 respectively. (Prove this). 

Finally, note that if Xo = 1/3 then Un = 2/3 and Vn = 1/3 for 
all n. So 2/3 and 1/3 are fixed points for the {Un} and {Vn} 

sequences or for the dynamical systems generated by the functions 

f and g respectively i.e., 

1 1 1 1 
f(x)==-x+- g(x)==-x+-

4 2' 4 4 (4) 

for x in [0,1]. For a function f from a set S into itself the 

sequence {fo(x) = x, In (x) =f(fn - I (x)), n ~ I} is called a 
dynamical system. Currently popular topics chaos and fractals deal 
with dynamical systems (see Barnsley, and Ramasamy and Iyer 
in Suggested Reading). 

The problem of the vacillating mathematician was posed by Zeev 
Barel (Suggested Reading). Krishnapriyan (Suggested Reading) 

f: S.··> S 
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solves this completely and discusses an approach to this prob­

lem using difference equations, generating functions and matrix 

methods. 

Now suppose our mathematician likes to inject some randomness 

in her moves. What happens to the sequence {Xn }; which now 

becomes a random sequence? The present article is devoted to 

answering this question. It will tum out that the set of limit 

points of the sequence can be (a) the entire interval [0,1] (b) a set 

like the Cantor set (defined later in the article) of length 

(measure) zero and (c) quite arbitrary and thus very different 

from the deterministic situation discussed earlier. 

We conclude this section with the following two observations. 

1. Suppose our mathematician when moving towards one 

always goes a fraction a of the remaining distance and when 

moving towards zero always goes a fraction b of the distance. It 
can be shown that in this case Un and Vn satisfy 

Un+1 =(1 - a) (1 - ~) U n +a 
(5) 

and hence 

U a dV (l-p)a 
n ~--an n ~--'--

l-r l-r 
(6) 

where r = (1-a) (1- ~). 

2. The random sequence {Xn} generated by the mathematician 

in the stochastic case is a model that is applicable in some real life 

situations. For example, let fj}~, be a random sequence 

denoting the levelin a reservoir on period j by Yj. Let 'tl' 't2,t3 

be the times at which the sequence {Yj} has a local minimum 

or maximum. Let Xn = Ytll Suppose the reservoir has a 

minimum zero and a maximum normalised to be one, say. Then 

the sequence {Xn } has a behaviour similar to our mathematician. 

Stochastic generalizations of 

the vacillating mathematician 

provide models for some real 

life situations. 
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It is clear that we could substitute the reservoir level by stock 

prices, rainfall amounts, inventory level or any other randomly 
varying sequence in a bounded interval. 

We will consider several stochastic (Le. random) versions in the 
next part of this article. Stochastic means random. To analyze 
these problems we will require some concepts from probability 

theory which are outlined in the next section. 

As a simple stochastic generalization suppose that our 
mathematician starts at 0, goes half way through and then flips 
a fair coin. If the coin comes out heads she continues towards 
one and if the coin comes out tails she turns back towards O. 
Again half way through whatever direction she is headed she 
flips a fair coin and either continues in that direction or goes in 
the opposite direction. 

To analyse this model, as before, let Xn denote the position at 
the nth change point. Then, given X

n
, 

_ [Xn + (1-2
Xn

) with probability 1/2 
Xn+l - X 

_n with probability 1 / 2 
2 

independent of Xo' Xl' ... X n-}' 

(7) 
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Thus the distribution of X n+l givenXn depends only onXn and 
does not depend onXO'XI ... Xn_l or n. In this case the sequence 

{Xn}~ is called a Markov Chain with stationary transition 

probabilities (see Billingsley and Feller in Suggested Reading). A 

discussion of Markov chains follows in the next section. We will 
analyze this model and other stochastic generalizations in the 
next part of this series. 

Markov Chains 

A sequence of random variables {Xn }: is called a Markov chain 

if givenXn the past (XO,XI , ... ,Xn_l) and the future (Xn+l'Xn+z' 

... ) are stochastically independent. Thisproperty was introduced 
by A A Markov at the turn of the century as asimple notion of 
dependence in time evolution and as a departure from full 

independence (see Feller in Suggested Reading). Markov chains 
have proved to be very useful in a number of applications, 
especially in telephone traffic, computer traffic on the informa­
tion highway, waiting lines, stock prices, etc. When the transition 

probability P(Xn+1 = j I Xn =i ) (where peA IB) stands for the 
probability of the event A given that B has happened) depends 
only on i andj and not on n the Markov chain {Xn} is said to 
have time homogeneous or stationary transition probabilities. 
Here we discuss only this case. The non time-homogeneous 
Markov chains also have important applications. We shallnow 

assume that the sets of values taken by the chain {Xn }: known 

as the state space is a finite or countable set identified as {1,2,3, ... }. 

Let p~n) == P(Xn+1 = j! Xl = i) = P(Xn = j! Xo = i) .Then, 

by the Markov property, 

pt~) == P(Xz = j I Xo = i) 

= LP(X2 =j,X1 =k! Xo =i) 
k 

A sequence of random 

variables is called a Markov 

chain if the past and future of 

the chain are mutually 

independent, given the present. 
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= L P (Xz = j 1 Xl = k,Xo = i) P(XI = k 1 Xo = i) 
k 

= LP(XZ =jl Xl =k)P(XI =kl Xo =i) 
k 

= LPkjPik 
k 

and more generally p~n) == P(Xn = j I Xo = i) satisfy 

p~nl+n2) = LPi"I) pi?) 
k 

This is known as the Chapman - Kolmogorov relation. The above 

discussion shows that in matrix notation P (Z) == ((p i}Z) » is simply 

pZ and p(n) = ((p~n») is the nth power P n of P = ((Pij» . 

The main objects of interest are: (a) the probability distribution 

tl n of Xn' i.e. 

fln (j) == P(Xn = j) 

~ (n) (') = ~Pij flo t . , , 

tlo = {tlo (i)} being the distribution of Xo' (b) the behavior of tln 

for large nand (c) the behavior of time averages of the sort 

1 n 

;; L!(Xj ) for bounded functions f such as the indicator func-
I 

tionIA (x) which is one if x is in A and zero otherwise (in this case 

the time average is simply the proportion of visits to A by the 
chain during the first n steps). 

A Markov chain {Xn } with stationary transition probabilities 
P = ((P ij» is irreducible if for each pair i,j there is an integer n such 

that p~n) == P(Xn = j I Xo = i) is strictly positive. A state i is said 

to be recurrent if P(Xn = i for some n ~ 1 I Xo = i) is one. That 
is, starting from i the chain returns to i with probability one. If 
T. ==min {n: n ~ I,X = i} is thefirstretum time to statei, theni , , n 

being recurrent is the same as peT; < 00 I Xo = i) = 1. A state i is 
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transient if it is not recurrent. A recurrent state i is called positive 

or null recurrent according as the mean value of Tj' i.e., E(Tj I 
Xo=i) is finite or infinite. It can be shown that in the irreducible 
case, if one state is recurrent (null or positive) all states are 
recurrent (null or positive). The same is true for transience. A 

stateihasperioddj =g.c.d. {n:P(Xn=jIXo=i) > O}. Then, in the 
irreducible case dj=d for all i. 

If dj = 1 then i is called aperiodic. The main limit theorem for 

Markov chains is the following. 

Theorem 1. Let {Xn }; be a Markov chain with stationary 

transition probability matrix P=«(Pjj))' Let the chain be 
irreducible, positive recurrent and aperiodic. Then there exists a 
probability distribution {7t) such that 

(a) for each i,j lim p~n) = 7t j (convergence to equilibrium) 

(b) 7t j = l: 7t iPij (invariance or equilibrium) 
i 

(c) 7t j = (E(Tjl Xo = j))-l (probability of being at j = recipro­

cal of the mean recurrence time) 

for every bounded functionf(.) (law of large numbers i.e. time 

average = ensemble average); in particular for f = IA' 

If the aperiodici ty condition is dropped then (b), (c), (d) are still 
true but (a) is replaced by the Cesaro convergence i.e. for all i,j 

1· 1 l:n (r) Im- p .. =7t. 
n n 'J J 

o 

When the state space is not countable there is an appropriate 
extension of the above theorem. 
The author would like to thank Alladi Sitaram for encouraging 
him to write this article for Resonance and Mohan Delampady 
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Ornithology may sometimes even entail hazards of a different kind. I recall 

one particularly hair-raising incident along the Himalayan trail from Almora 

to the Upu Lekh Pass on my way to Lake Manasarovar and Mt Kailas in 

1945, a few years before the Dragon swallowed Tibet. It was ata particularly 

narrow part of the trail with a thousand feet of vertical scarp on one side 

and the roaring Kali river some 300 feet vertically down on the other. I had 

walked ahead of the porters while they were striking camp and was all by 

myself. Just at that moment a tiny bird - how well I remember that 

Yellownaped Yuhina! - got up to the top of a bush, some yards away on the 

flanking hillside. Just as I got it in the field of my glasses, it hopped a bit 

further up, so to get a better view I took a step back, with glasses still glued 

to my eyes, and entirely unmindful of where I was standing with my back 

to the abyss. As I did so, I felt a small pebble slip from under my heel and 

heard a faint continuing clatter as it went rolling down the hill. Still unmindful 

of anything untoward I casually looked back over my shoulder to see what 

it was all about. What I saw literally made my hair stand on end. In a flash 

I realized that I was on the very edgeof beyond - two inches more and I 

would have followed that rollicking pebble. The great leap forward I made 

at that instant would have done credit to Mao's reforming zeal. I am 

wondering to this day what my porters would have made of my mysterious 

disappearance when they reached the end of the day's march and found 

me missing, since finding any trace of a vanished ornithologist in that rocky 

gorge of the tumultuous river would indeed have been purely accidental. 

Salim Ali in The Fall of A Sparrow 
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