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Algorithms 
2. The While-Construct 

R K Shyamasundar 

In this article, we consolidate the introductory concepts 
developed in the previous article of the series (Resonance, 
Vol. 1, No.1) and develop the iterative construct, one of the 
most important control constructs used to describe algo­
rithms. 

In the last article, we learnt about assignment and other basic 

commands which are imperative commands to a processor. Fur­

ther, we discussed the basic control structures which include 
sequential composition and the test (or more specifically, the if 

then-else) construct. Using these constructs, we developed the 

basic flowchart language for describing algorithms. In this article, 

we continue the discussion of control constructs and their repre­
sentation using flowcharts. We describe the 'while-construct' 

which is one of the most widely used iterative control constructs 
for describing algorithms. 

Iteration 

We concluded the last article with the question: "Is it possible to 

obtain a concise flowchart to find the sum of the first N natural 
numbers?" We hinted that it was possible, by using a construct in 

which the number of times a set of commands is executed depends 

on the values of certain variables. Such a construct, referred to as 
the 'while-construct', is shown in Figure 1. The construct is 

interpreted as follows: Test for B; if the test leads to the answer 

"NO", then we have reached the end; otherwise the control goes 

to block S, after which the process repeats. 

It is important to note that B is false (usually denoted by -, B where 

-, denotes the logical negation unary operator) on termination of the 
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!n the while-loop. The textual representation of the construct is: 
while-ccnstruct 

the number cf times 

a set of corwnands 

is executed 

depends on the 

values of certain 

variables. 

Euclid's Algorithm 

We learn to compute the 

greatest common divisor 

(ged) in our primary school 

arithmetic classes. Al­

though popularly known 

as Euclid's Algorithm, it 

was described by Euclid's 

predecessor Eudoxous. 

The ancient Chinese had 

also discovered this algo­

rithm. 

while B do 5 endwhile 

When these operations terminate, we can assert that --, B (i.e., 
complement of B) holds. 

Example 1: Going back to summing the first N natural numbers. 

We describe an algorithm that can be used for any N. The idea is 

to keep track of the numbers we have already added and exit when 
we have added all the N numbers. The flowchart shown in Figure 

2 describes such an algorithm. We see that the same algorithm 
works for any value of N (fixed a priori). The textual algorithm 
(referred to as 'code') corresponding to the flowchart is given in 

Table 1. This algorithm solves the problem of adding the first N 

natural numbers for any value of N. We may add the box 'read N', 
shown in Figure 3, to the top of the flowchart given in Figure 2. It 

accomplishes the task of substitutjng the value of N in the 
flowchart of the given program. In other words, when read N is 

executed, the variable N takes the value from the given input. 

Example 2: Euclid's Algorithrr,. 

We now describe Euclid's algorithm for computing the greatest 
common divisor (gcd) of two positive integers m and n. By gcd, we 

mean the largest positive number that exactly divides both m and 

n. A naive way of obtaining the gcd is to factor both the numbers and 

take the common factors. However, such a scheme is quite tedious. 

The Greek philosopher Euclid provided a better solution to this 

problem. Let us see the reasoning behind Euclid's algorithm. Let x 

be equal to gcd (m,n) where m > n. Then, we observe the following: 

• x ~ n since n ~ m. That is, the maximum value ofx is bounded 
by the smaller of the two numbers (i.e., by n). 

• x = n implies that n exactly divides m. 

• From the definition ofgcd, we see thatgcd (m,n) = gcd (n,m). 



counl :=() 

sum:=O 

i:= I 

prinl 

YES 

sum: = sum + i 

count := counl + Ii: = i+ I 

Table 1. Textual ...,,..ntatlon of the flowchart 

count:=O; 

sum: =0; 

i: = 1; 

while (count < N) do 

sum: = sum + i; (* sum contains the sum offlrst i numbers * ) 

i: = i + 1; ( * increment ito get the next number * ) 
count: = count + 1; (* count counts the numbers added *) 

endwhile; 

prinfsum; 

(* sum contains the sum offlrsf Nnumbers *) 

FIgure2 A flowchartfDsum 

the first N natural numbel'$ 

IN fD be read separately}. 

Figure 3 Box 'read N' fD be 

composed with the flow­
chart of Figure 2. 
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Figure 4 Flowcharl for 

computing gcd Im,n) using 
Euclid's algorithm. 

The greatest 
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of two positive 
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the largest positive 

number that divides 

both mand n. 
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• Let us suppose that n does not exactly divide m. Then, we have 

m = p x n + r for some p and 0 < r < n. We can conclude that 
x must divide nand r. This follows since x must divide both 

the numbers m and n. Can we say anything stronger? Yes, we 
can say thatged (m,n) is the same asged (n,r) (follows from the 

definition ofged). The same argument can be applied forr and 

n. Note that the bound on the candidate for x gets reduced 
each time; now x is bounded by r. This is a crucial step in 

ensuring that the algorithm terminates. 

Assuming m is greater than or equal to n, the flowchart for 
computing the ged is shown in Figure 4. The operator rem used 

r := m rem n 

A 

B 
n is the GCD 

YES 
E 

NO 

r := m rem n 

c 

m := n; 

n:= r; 
o 
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Table 2. Trace of gcd (8,6) 

Action 

f:= 8 rem 6 = 2 

f~O-> m:= 6; n:= 2; f:= 6 rem 2 = 0 

f= 0 -> '2' is the ged 

here is defined by: p rem q = remainder obtained on dividingp by 
q. The trace of Euclid's Algorithm for m = 8 andn = 6 is shown 
in Table 2. 

Now let us see how we can informally argue that the algorithm 
indeed computes what we want. For convenience, we have 

labelled the arrows in the flowchart. By observing the flow of 
information, we can assert the following facts at the labels: 

• At label A: r is set to the remainder obtained on dividing m 
by n. Hence, 0 ~ r < n; m and n remain unchanged (i.e., 
m = p X n + r assuming m ~ n). 

• At C: the remainder r is not equal to zero. 
• At D: m is set to nand n is set to the remainder. Also, we have 

m > n. Can we say that the gcd of the original m and n and the 

new m and n are the same? From the discussion given above, 
we can indeed assert this statement. 

• At B: The remainder r is equal to zero -leading to the gcd. 

Example 3: Computing a factorial. 

The familiar definition of factorial is 

fact (n) = n! = 1 x 2 X . .. X n, n > O. 

How do we derive an algorithm for computing fact? We first 
expressfact (i) in terms of the fact (j) for j < i. Note that 

fact (1) 

fact (i) 

fact (i + 1) 

1 

= lx ... xi 
1 x ... xi x(i+l) 

(1) 

(2) 

(3) 

The algorithm for 

computing the factorial 

Ifactl uses the 

recurrence relation 

that fact Ii + 11 equals 

fact iiI x Ii + 11. 
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Table 3. Algorithm for COmputing a factorial 

fact: = 1; 

i: =0; 

whilei ~ N do 

i:= i+ 1; 

fact := fact • i 

end while 

print fact; 

Assuming fact (0) = 1, and combining (2) and (3) we get the 

following relations (recurrence): 

fact (0) = 1 

fact (i+ 1) = fact (i) X (i+ 1) 

(4) 

(5) 

Now, we can get a simple algorithm using the relations (4) and (5). 

In the algorithm, we start with an initialization offact (0) to be 1. 

The successive factorials can then be obtained by multiplying the 
immediate preceding factorial (computed in the previous step) by 

the next natural number. The algorithm is described in Table 3. 

Example 4: Finding the 'integer' square root. 

We devise an algorithm to find the approximate (integer) square 

root of a flXed number n ~ O. For example, the integer square root 

of 4 is 2, integer square root of 5 is 2, and integer square root of 10 

is 3. That is we have to find an a such that 

(6) 

The basic scheme would be to start from a good guess and move 
on to the next guess if the number chosen does not satisfy the 

required property. It is important that when we move from the 

current guess to the next guess we do not miss the actual number 

we are looking for. Thus, starting with 0 as the first guess and 

incrementing it by one every time till (6) is satisfied, will eventu­

ally yield the result. But it will be too 'expensive'. We can learn 
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Table 4. Finding the Integer Square Root. 

(. Finding the integer square root of n·) 

0:= 0 ; (. lowest guess .) 

b := n + 1 ; (. largest guess .) 

while (a+ 1) ;tf b do (. get the average guess .) 

d:= (0 + fj, + 2; (. + denotes integer division·) 

if (d· d) ~ n then 

0:= d 

elseb:= d 

endif 

endwhile 

(* refined lower guess *) 

(* refined largest guess *) 

something from the relation (6) itself. We simultaneously guess a 
lower bound (say 1 ) and an upper bound (say u) and update these 

two bounds appropriately. At the initial stage, 0 is a candidate for 

1 and n+ 1 is a candidate for u. Next, how do we update 1 and u? 

By taking the square root of the numbers involved in the relation 
(6) we can derive the following relation 

a ~..Jn < (a+l) (7) 

Thus, a is bounded above by -vn. Let us try to reduce the interval 

(1, u) by half, by setting 1 or u to (1 + u )/2 such that the condition 

1 < u is still satisfied. The reader can check that this strategy will 

not skip the number we are looking for. Note that 1 will never 
reach the upper bound. This idea has been used to develop the 

algorithm described in Table 4. 

Example 5: Finding an 'approximate'square root. 

In the previous section, we developed an algorithm for finding the 

integer square root of a number. The integer square root can be 
considered as a crude approximation to the square root of a 

number. Let us see whether we can modify the above technique 

and compute the square root of any positive number such that it 

differs from the actual square root by at most some given tolerance 

To find the integer 

square root the 

basic scheme 

would be to start 

from a good guess 

and move on to the 

next guess if the 

number chosen 

does not satisfy the 

required property. It 

is important that 

when we move 

from the current 

guess to the next 

guess we do not 

miss the actual 

number we are 

looking for. 
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The important 

question in iteration 

is: " When do we 

stop?" We stop 

when the iterates 

stop decreasing, 

i.e. when there are 

no more 

representable values 

with the given 

machine accuracy. 
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limit. Since square roots of natural numbers need not be natural 

numbers, such a modification will permit us to find the square 
root of decimal numbers also. It may be pointed out that in 

general, we cannot compute the exact value of the square root of 

a number, as the number may not be representable in the given 
machine accuracy. 

Now, we will adapt the above algorithm (given in Table 4) and 
compute the approximate square root of a number. Let us assume 

that Xo > 0 is the first guess of the square root of the given number 
a; a is assumed to be a positive non-zero number. Then,a/xo is also 
an approximation to ~a and 

if Xo > ~a 
if Xo < ~a. 

The interesting fact is that the average of Xo and a/xo' say Xl' is 
also an approximate square root and satisfies the property 

Xl > ~a 

The equality holds only if Xo = ~a. Note that it is not necessary 

that Xo be greater than or equal to ~a. We can repeat the process of 

obtaining the next approximate square root; then, the (i + l)th 

approximation (denoted by Xi + I ) is given by 

Xi + I = (Xi + a/Xi )/2 

The fact that the new approximate square root is better than the 

earlier one follows from: 

From this relation, we infer that the value gets refined through the 

process of finding the next approximation from the current one. 
The successive approximates of Xi are referred to as the iterates. Do 

note that each iterate is better than the earlier ones. The important 

question is: "When do we stop?" We stop when the iterates stop 

decreasing; in the above case, they stop decreasing when there are 

no more representable values between ~a and Xi with the given 
machine accuracy. Suppo~e error represents the accuracy to which 
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Table 5. Finding the Approximate Square Root 

(* Finding the approximate square root of A *) 

a := A ; (* A is the given number *) 

£:= error, 

xold:=~; 

xnew:= (xold + 0/ xold) / 2 ; 

while (xnew- xold) > £ do 

xold:= xnew, 

(* error is the given accuracy *) 

(* initial guess *) 

(* refined root *) 

xnew:= (xold + 0/ xold) / 2; (* refined root *) 

endwhile 

the number can be represented in the given computer. Then, we 

can stop whenever (Xi + 1 -Xi )is less than or equal to this quantity. 
Assuming that we have been given an initial guess and an error 
which can be tolerated, the program for finding the approximate 
root is given in Table 5. 

Note the following: 

• The division operator 'f used in Table 5 denotes the usual 

division operation and not the integer division operation used 
in Table 4. 

• Unless the initial guess is the correct guess, the equality in 
the relation among the iterates does not hold. Thus, if we start 

with an incorrect guess even for a natural number having an 
exact square root, we will not get the exact root using this 

method. 

• The number of iterations before the program terminates de­

pends on the starting values (initial guesses); it is of interest 

to note that there are procedures to arrive at these initial 
guesses for the technique discussed above. 

The method described above for computing the approximate 

square root is referred to as Newton's method for finding..Ja after 

the famous English mathematician Isaac Newton. 

In Table 5, we have essentially solved the nonlinear equation 
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Iterative Method 

In an iterative method. we 

compute a new approxi­

mate solution in terms of 

the previous one. The new 

approximafionshould be 

better than the old one. 

Iterative methods are 

sometimes called trial and 

error methods. This is be­

cause each successive it­

erate relies on the degree 

by which it differs from the 

previous one. For this 

method to be ofvalue,it is 

necessary to showthatthe 

refined solutions eventu­

ally become more accu­

rate. Further, one should 

define a condition for stop­

ping the iterations as in 

most cases theiferate will 

never reach the correct 

answer. However, finding 

such condifions is difficult. 

The reason for referring fo 

the while-construct de­

fined in the earlier sections 

is also based .on . these 

observations. 
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x2 = a. The method can be extended to find the nth root of the 

equation xn = m and it is usually referred to as the Newton­

Raphson method. 

Discussion 

In the previous sections and the previous article, we have learnt 

several constructs such as: assignment and basic commands, 
sequential composition, iJ-then-t!lse, and the while construct. We 

can categorize these constructs into two classes: 

• Imperative Commands: These are instructions to the processor. 
Constructs such as assignment and other basic commands 

belong to this class. 

• Control Commands: These are commands which reflect the 
way in which the various instructions are sequenced. The if­

then-else statement provides conditional sequencing of in­

structions, and the while-construct provides conditional se­

quencing based repeatedly on a given condition. These con­

structs are referred to as control structures. The control structures 

abstract the way the commands can be executed on a machine. 

Such an abstraction is often referred to as control abstraction. It 

must be evident to the reader that one can devise various 
other control structures. For instance, one can devise a con­
struct where the control enters the statement block first and is 

tested at the end of the statement block execution. This is 

different from the while-construct where a condition is tested 

before entering a statement block. One such construct is the 
repeat-until construct. For example, repeat S until B endrepeat 
can be interpreted as: Repeatedly execute S until the condition 

B holds. Thus, when the statement terminates, we can con­

clude that B holds. 

Having looked at the above basic constructs, it is natural to ask the 

following questions: 

• Are the above mentioned constructs general for all program­
ming purposes and if yes, in what sense? 

------------------~~--------------R-E-SO--N-A-N-C-E-I-M--a-rc-h-1-99-6 



Sl:RIl:S I ARTICLl: 

• In the description of algorithms and programming languages, 
what is the role of control abstraction? 

• What are the inherent limitations of the algorithmic processes? 

In future articles in this series, we will show that these constructs 

are powerful and can be used to encode any algorithm. In the next 

article, we will discuss procedural abstraction and one very widely 

used programming technique called recursion in the context of 

procedural abstraction. We will also provide a relative compari­

son of the iterative and the recursive constructs in the description 
of algorithms. 
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refled the way various 

instructions are 
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lli:Jl The ultimate folly •.• ''The worst thing that can happen - will happen lin the 1980sl­

is not energy depletion, economic collapse, limited nuclear war, or conquest by a 

totalitarian government. As terrible as these catastrophes would be for us, they can be 

repaired within a few generations. The one process ongoing in the 1980s that will take 

millions of years to corred is the loss of genetic and species diversity by the destruction of 

natural habitats. This is the folly our descendants are least likely to forgive us. ". (E 0 Wilson, 

Harvard Magazine, January-February 1980J. 

iid] The discovery of the Mobius strip ••• In 1858, a scientific society in Paris offered a prize 

- for the best essay on a mathematical subject. In the course of coming up with an essay 

for this competition, August Ferdinand Mobius, a mathematician in Leipzig, Germany, 

'discovered' the surface that now bears his name. It is called the Mobius-strip. 
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