
SERIES I ARTICLE

Algorithms
2. The While-Construct

R K Shyamasundar

In this article, we consolidate the introductory concepts
developed in the previous article of the series (Resonance,
Vol. 1, No.1) and develop the iterative construct, one of the
most important control constructs used to describe algo­
rithms.

In the last article, we learnt about assignment and other basic

commands which are imperative commands to a processor. Fur­

ther, we discussed the basic control structures which include
sequential composition and the test (or more specifically, the if

then-else) construct. Using these constructs, we developed the

basic flowchart language for describing algorithms. In this article,

we continue the discussion of control constructs and their repre­
sentation using flowcharts. We describe the 'while-construct'

which is one of the most widely used iterative control constructs
for describing algorithms.

Iteration

We concluded the last article with the question: "Is it possible to

obtain a concise flowchart to find the sum of the first N natural
numbers?" We hinted that it was possible, by using a construct in

which the number of times a set of commands is executed depends

on the values of certain variables. Such a construct, referred to as
the 'while-construct', is shown in Figure 1. The construct is

interpreted as follows: Test for B; if the test leads to the answer

"NO", then we have reached the end; otherwise the control goes

to block S, after which the process repeats.

It is important to note that B is false (usually denoted by -, B where

-, denotes the logical negation unary operator) on termination of the

RESONANCE I March 1996

R K Shyamasundar

is Professor of

Computer Science at

TIFR, Bombay

who has done extensive

research in various

foundation areas of

computer science.

YES

S

Figure 1 An Important al­
gorithmic construct called
'while loop~

13

SERIES I ARTICLE

!n the while-loop. The textual representation of the construct is:
while-ccnstruct

the number cf times

a set of corwnands

is executed

depends on the

values of certain

variables.

Euclid's Algorithm

We learn to compute the

greatest common divisor

(ged) in our primary school

arithmetic classes. Al­

though popularly known

as Euclid's Algorithm, it

was described by Euclid's

predecessor Eudoxous.

The ancient Chinese had

also discovered this algo­

rithm.

while B do 5 endwhile

When these operations terminate, we can assert that --, B (i.e.,
complement of B) holds.

Example 1: Going back to summing the first N natural numbers.

We describe an algorithm that can be used for any N. The idea is

to keep track of the numbers we have already added and exit when
we have added all the N numbers. The flowchart shown in Figure

2 describes such an algorithm. We see that the same algorithm
works for any value of N (fixed a priori). The textual algorithm
(referred to as 'code') corresponding to the flowchart is given in

Table 1. This algorithm solves the problem of adding the first N

natural numbers for any value of N. We may add the box 'read N',
shown in Figure 3, to the top of the flowchart given in Figure 2. It

accomplishes the task of substitutjng the value of N in the
flowchart of the given program. In other words, when read N is

executed, the variable N takes the value from the given input.

Example 2: Euclid's Algorithrr,.

We now describe Euclid's algorithm for computing the greatest
common divisor (gcd) of two positive integers m and n. By gcd, we

mean the largest positive number that exactly divides both m and

n. A naive way of obtaining the gcd is to factor both the numbers and

take the common factors. However, such a scheme is quite tedious.

The Greek philosopher Euclid provided a better solution to this

problem. Let us see the reasoning behind Euclid's algorithm. Let x

be equal to gcd (m,n) where m > n. Then, we observe the following:

• x ~ n since n ~ m. That is, the maximum value ofx is bounded
by the smaller of the two numbers (i.e., by n).

• x = n implies that n exactly divides m.

• From the definition ofgcd, we see thatgcd (m,n) = gcd (n,m).

counl :=()

sum:=O

i:= I

prinl

YES

sum: = sum + i

count := counl + Ii: = i+ I

Table 1. Textual ...,,..ntatlon of the flowchart

count:=O;

sum: =0;

i: = 1;

while (count < N) do

sum: = sum + i; (* sum contains the sum offlrst i numbers *)

i: = i + 1; (* increment ito get the next number *)
count: = count + 1; (* count counts the numbers added *)

endwhile;

prinfsum;

(* sum contains the sum offlrsf Nnumbers *)

FIgure2 A flowchartfDsum

the first N natural numbel'$

IN fD be read separately}.

Figure 3 Box 'read N' fD be

composed with the flow­
chart of Figure 2.

RESONANCE I March 1996

~--~------~----~-~-~--
15

Figure 4 Flowcharl for

computing gcd Im,n) using
Euclid's algorithm.

The greatest

common divisor (gcdJ

of two positive

integers m and n is

the largest positive

number that divides

both mand n.

~tlClt~ I AICII~Lt

• Let us suppose that n does not exactly divide m. Then, we have

m = p x n + r for some p and 0 < r < n. We can conclude that
x must divide nand r. This follows since x must divide both

the numbers m and n. Can we say anything stronger? Yes, we
can say thatged (m,n) is the same asged (n,r) (follows from the

definition ofged). The same argument can be applied forr and

n. Note that the bound on the candidate for x gets reduced
each time; now x is bounded by r. This is a crucial step in

ensuring that the algorithm terminates.

Assuming m is greater than or equal to n, the flowchart for
computing the ged is shown in Figure 4. The operator rem used

r := m rem n

A

B
n is the GCD

YES
E

NO

r := m rem n

c

m := n;

n:= r;
o

16 -------"*""'--------R-E-SONANCE I March 1996

Step

l.

2.

3.

SERIES I ARTICLE

Table 2. Trace of gcd (8,6)

Action

f:= 8 rem 6 = 2

f~O-> m:= 6; n:= 2; f:= 6 rem 2 = 0

f= 0 -> '2' is the ged

here is defined by: p rem q = remainder obtained on dividingp by
q. The trace of Euclid's Algorithm for m = 8 andn = 6 is shown
in Table 2.

Now let us see how we can informally argue that the algorithm
indeed computes what we want. For convenience, we have

labelled the arrows in the flowchart. By observing the flow of
information, we can assert the following facts at the labels:

• At label A: r is set to the remainder obtained on dividing m
by n. Hence, 0 ~ r < n; m and n remain unchanged (i.e.,
m = p X n + r assuming m ~ n).

• At C: the remainder r is not equal to zero.
• At D: m is set to nand n is set to the remainder. Also, we have

m > n. Can we say that the gcd of the original m and n and the

new m and n are the same? From the discussion given above,
we can indeed assert this statement.

• At B: The remainder r is equal to zero -leading to the gcd.

Example 3: Computing a factorial.

The familiar definition of factorial is

fact (n) = n! = 1 x 2 X . .. X n, n > O.

How do we derive an algorithm for computing fact? We first
expressfact (i) in terms of the fact (j) for j < i. Note that

fact (1)

fact (i)

fact (i + 1)

1

= lx ... xi
1 x ... xi x(i+l)

(1)

(2)

(3)

The algorithm for

computing the factorial

Ifactl uses the

recurrence relation

that fact Ii + 11 equals

fact iiI x Ii + 11.

-RE-S-O-N-A-N-C-E--l -M-a-rc-h-1-9-96--------------~-------------------------------17

The reader may observe that

various interesting programs

can be developed along the

same lines for computing the
'sine' function from its series,

the 'Fibonacci numbers', etc .

SERIES I ARTICLE

Table 3. Algorithm for COmputing a factorial

fact: = 1;

i: =0;

whilei ~ N do

i:= i+ 1;

fact := fact • i

end while

print fact;

Assuming fact (0) = 1, and combining (2) and (3) we get the

following relations (recurrence):

fact (0) = 1

fact (i+ 1) = fact (i) X (i+ 1)

(4)

(5)

Now, we can get a simple algorithm using the relations (4) and (5).

In the algorithm, we start with an initialization offact (0) to be 1.

The successive factorials can then be obtained by multiplying the
immediate preceding factorial (computed in the previous step) by

the next natural number. The algorithm is described in Table 3.

Example 4: Finding the 'integer' square root.

We devise an algorithm to find the approximate (integer) square

root of a flXed number n ~ O. For example, the integer square root

of 4 is 2, integer square root of 5 is 2, and integer square root of 10

is 3. That is we have to find an a such that

(6)

The basic scheme would be to start from a good guess and move
on to the next guess if the number chosen does not satisfy the

required property. It is important that when we move from the

current guess to the next guess we do not miss the actual number

we are looking for. Thus, starting with 0 as the first guess and

incrementing it by one every time till (6) is satisfied, will eventu­

ally yield the result. But it will be too 'expensive'. We can learn

1-8------------------------------~--------------R-E-SO--N-A-N-C-E-I-M-a-r-ch--19-9-6

Table 4. Finding the Integer Square Root.

(. Finding the integer square root of n·)

0:= 0 ; (. lowest guess .)

b := n + 1 ; (. largest guess .)

while (a+ 1) ;tf b do (. get the average guess .)

d:= (0 + fj, + 2; (. + denotes integer division·)

if (d· d) ~ n then

0:= d

elseb:= d

endif

endwhile

(* refined lower guess *)

(* refined largest guess *)

something from the relation (6) itself. We simultaneously guess a
lower bound (say 1) and an upper bound (say u) and update these

two bounds appropriately. At the initial stage, 0 is a candidate for

1 and n+ 1 is a candidate for u. Next, how do we update 1 and u?

By taking the square root of the numbers involved in the relation
(6) we can derive the following relation

a ~..Jn < (a+l) (7)

Thus, a is bounded above by -vn. Let us try to reduce the interval

(1, u) by half, by setting 1 or u to (1 + u)/2 such that the condition

1 < u is still satisfied. The reader can check that this strategy will

not skip the number we are looking for. Note that 1 will never
reach the upper bound. This idea has been used to develop the

algorithm described in Table 4.

Example 5: Finding an 'approximate'square root.

In the previous section, we developed an algorithm for finding the

integer square root of a number. The integer square root can be
considered as a crude approximation to the square root of a

number. Let us see whether we can modify the above technique

and compute the square root of any positive number such that it

differs from the actual square root by at most some given tolerance

To find the integer

square root the

basic scheme

would be to start

from a good guess

and move on to the

next guess if the

number chosen

does not satisfy the

required property. It

is important that

when we move

from the current

guess to the next

guess we do not

miss the actual

number we are

looking for.

R-E-S-O-N-A-N-C-E-I--M-a-rc-h-1-99-6--------------~----------------------------
19

20

The important

question in iteration

is: " When do we

stop?" We stop

when the iterates

stop decreasing,

i.e. when there are

no more

representable values

with the given

machine accuracy.

;:)ICICIIC;:) I AICII\.Lt

limit. Since square roots of natural numbers need not be natural

numbers, such a modification will permit us to find the square
root of decimal numbers also. It may be pointed out that in

general, we cannot compute the exact value of the square root of

a number, as the number may not be representable in the given
machine accuracy.

Now, we will adapt the above algorithm (given in Table 4) and
compute the approximate square root of a number. Let us assume

that Xo > 0 is the first guess of the square root of the given number
a; a is assumed to be a positive non-zero number. Then,a/xo is also
an approximation to ~a and

if Xo > ~a
if Xo < ~a.

The interesting fact is that the average of Xo and a/xo' say Xl' is
also an approximate square root and satisfies the property

Xl > ~a

The equality holds only if Xo = ~a. Note that it is not necessary

that Xo be greater than or equal to ~a. We can repeat the process of

obtaining the next approximate square root; then, the (i + l)th

approximation (denoted by Xi + I) is given by

Xi + I = (Xi + a/Xi)/2

The fact that the new approximate square root is better than the

earlier one follows from:

From this relation, we infer that the value gets refined through the

process of finding the next approximation from the current one.
The successive approximates of Xi are referred to as the iterates. Do

note that each iterate is better than the earlier ones. The important

question is: "When do we stop?" We stop when the iterates stop

decreasing; in the above case, they stop decreasing when there are

no more representable values between ~a and Xi with the given
machine accuracy. Suppo~e error represents the accuracy to which

------------------~---------------RE-S-O-N-A-N-C-E--I-M-a-r-ch--19-9-6

SERIES I ARTICLE

Table 5. Finding the Approximate Square Root

(* Finding the approximate square root of A *)

a := A ; (* A is the given number *)

£:= error,

xold:=~;

xnew:= (xold + 0/ xold) / 2 ;

while (xnew- xold) > £ do

xold:= xnew,

(* error is the given accuracy *)

(* initial guess *)

(* refined root *)

xnew:= (xold + 0/ xold) / 2; (* refined root *)

endwhile

the number can be represented in the given computer. Then, we

can stop whenever (Xi + 1 -Xi)is less than or equal to this quantity.
Assuming that we have been given an initial guess and an error
which can be tolerated, the program for finding the approximate
root is given in Table 5.

Note the following:

• The division operator 'f used in Table 5 denotes the usual

division operation and not the integer division operation used
in Table 4.

• Unless the initial guess is the correct guess, the equality in
the relation among the iterates does not hold. Thus, if we start

with an incorrect guess even for a natural number having an
exact square root, we will not get the exact root using this

method.

• The number of iterations before the program terminates de­

pends on the starting values (initial guesses); it is of interest

to note that there are procedures to arrive at these initial
guesses for the technique discussed above.

The method described above for computing the approximate

square root is referred to as Newton's method for finding..Ja after

the famous English mathematician Isaac Newton.

In Table 5, we have essentially solved the nonlinear equation

RESONANCE I March 1996 - ---- . - -----vV\fI!vv--------- -

Iterative Method

In an iterative method. we

compute a new approxi­

mate solution in terms of

the previous one. The new

approximafionshould be

better than the old one.

Iterative methods are

sometimes called trial and

error methods. This is be­

cause each successive it­

erate relies on the degree

by which it differs from the

previous one. For this

method to be ofvalue,it is

necessary to showthatthe

refined solutions eventu­

ally become more accu­

rate. Further, one should

define a condition for stop­

ping the iterations as in

most cases theiferate will

never reach the correct

answer. However, finding

such condifions is difficult.

The reason for referring fo

the while-construct de­

fined in the earlier sections

is also based .on . these

observations.

21

22

The method for

computing the

approximate

square root is

referred to as

Newton's method

for finding --J a, after

the famous English

mathematicia n

Isaac Newton.

Address for correspondence

R K Shyamasundar

Computer Science Group,

Tata Institute of

Fundamental Research,

Homi Bhabha Road,

Bombay 400005, India.

SERIES I ARTICLE

x2 = a. The method can be extended to find the nth root of the

equation xn = m and it is usually referred to as the Newton­

Raphson method.

Discussion

In the previous sections and the previous article, we have learnt

several constructs such as: assignment and basic commands,
sequential composition, iJ-then-t!lse, and the while construct. We

can categorize these constructs into two classes:

• Imperative Commands: These are instructions to the processor.
Constructs such as assignment and other basic commands

belong to this class.

• Control Commands: These are commands which reflect the
way in which the various instructions are sequenced. The if­

then-else statement provides conditional sequencing of in­

structions, and the while-construct provides conditional se­

quencing based repeatedly on a given condition. These con­

structs are referred to as control structures. The control structures

abstract the way the commands can be executed on a machine.

Such an abstraction is often referred to as control abstraction. It

must be evident to the reader that one can devise various
other control structures. For instance, one can devise a con­
struct where the control enters the statement block first and is

tested at the end of the statement block execution. This is

different from the while-construct where a condition is tested

before entering a statement block. One such construct is the
repeat-until construct. For example, repeat S until B endrepeat
can be interpreted as: Repeatedly execute S until the condition

B holds. Thus, when the statement terminates, we can con­

clude that B holds.

Having looked at the above basic constructs, it is natural to ask the

following questions:

• Are the above mentioned constructs general for all program­
ming purposes and if yes, in what sense?

------------------~~--------------R-E-SO--N-A-N-C-E-I-M--a-rc-h-1-99-6

Sl:RIl:S I ARTICLl:

• In the description of algorithms and programming languages,
what is the role of control abstraction?

• What are the inherent limitations of the algorithmic processes?

In future articles in this series, we will show that these constructs

are powerful and can be used to encode any algorithm. In the next

article, we will discuss procedural abstraction and one very widely

used programming technique called recursion in the context of

procedural abstraction. We will also provide a relative compari­

son of the iterative and the recursive constructs in the description
of algorithms.

Suggested Reading

D E Knuth. Art of Computer Programming. Volume 1. Addison-Wesley

Publishing Co. 1972.

E W Dijkstra. A Short Introduction to the Art of Programming. Computer

Society ofindia. 1977.

G Polya. How to Solve It. Princeton University Press. 1973.

R G Dromey. How to Solve it by Computer. Prentice-Hall ofIndia, New Delhi.

1990.

We can categorize the

constructs studied so

far into two classes:

imperative

commands, which

are instructions to the

processor and control

commands, which

refled the way various

instructions are

sequenced.

It is a pleasure to acknowledge

the critica I constructive com­

ments and suggestions from

the series editor.

lli:Jl The ultimate folly •.• ''The worst thing that can happen - will happen lin the 1980sl­

is not energy depletion, economic collapse, limited nuclear war, or conquest by a

totalitarian government. As terrible as these catastrophes would be for us, they can be

repaired within a few generations. The one process ongoing in the 1980s that will take

millions of years to corred is the loss of genetic and species diversity by the destruction of

natural habitats. This is the folly our descendants are least likely to forgive us. ". (E 0 Wilson,

Harvard Magazine, January-February 1980J.

iid] The discovery of the Mobius strip ••• In 1858, a scientific society in Paris offered a prize

- for the best essay on a mathematical subject. In the course of coming up with an essay

for this competition, August Ferdinand Mobius, a mathematician in Leipzig, Germany,

'discovered' the surface that now bears his name. It is called the Mobius-strip.

RESO·~N-A-N~C-E-I-M--a-rc-h-1-99-6--------------~-
23

	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023

