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Abstract. The present paper analyses the electromagnetically-induced transparency (EIT) in a three-level ladder-
type system in an excitonic three-dimensional quantum dot (QD) with a parabolic potential in the presence of a
static magnetic field, a resonant probe field and a coupler field. Eigenvalues, wave functions, dipole matrix elements
and selection rules of the quantum system are calculated analytically within the effective mass approximation by
solving the corresponding Schrödinger equation and taking into consideration both the confinement and Coulomb
potentials of the electron–hole pair. To illustrate the interaction with the optical fields, the analytical expressions for
the complex electric susceptibility, absorption, dispersion, group index (GI) and the combined effects of external
factors such as magnetic field, hydrostatic pressure, temperature and dimensions of the QD are examined.
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1. Introduction

Electronic and optical studies in semiconductor het-
erostructures have gathered considerable attention
due to versatile device applications. Various studies have
been carried out on III–V semiconductor heterostruc-
tures, particularly, GaAs/Ga1−xAlxAs semiconductor
systems. The strong interaction of these heterostructure
systems with light induces novel optical phenomena that
are important to comprehend the conceptual physics
underlying non-linear optics in these structures. The
presence of manifold transition pathways, inhomoge-
neous broadening, enhanced nonlinear optical proper-
ties, design flexibility, ease of synthesis, etc. motivate
researchers to study interesting phenomena including
non-linear optical properties [1,2], Rashba spin–orbit
coupling [3], STIRAP [4], terahertz signal detection
[5], Kerr nonlinearity [6], etc. in various semiconduc-
tor systems. Electromagnetically-induced transparency
(EIT) is one of those phenomena where, using quan-
tum interference effects, an ultranarrow transparency
window (TW) opens up to a probe field beam in the pres-
ence of a strong coupling laser. The study of EIT allows

for many new applications, including quantum infor-
mation processing [7], efficient non-linear mixing [8],
nanosensor [9,10], refractive index sensor [11], slow-
light device [12] and optical switch [13] to name a few.
The process of EIT was first found theoretically and
was then established experimentally by Imamoğlu et
al [14,15] in atomic systems. Thereafter, both theoret-
ical and experimental researchers have written various
research papers based on the study of EIT in semicon-
ductor quantum nanostructures. Phillips and Wang [16]
reported experimental studies of EIT arising from exci-
ton spin coherence in the transient optical response of
GaAs quantum wells. Gumber et al studied EIT in the
two-dimensional quantum ring and its application in
enhancing the output of the sum-frequency generation
process [18]. Niculescu discussed the effect of the elec-
tric field process of EIT in a quantum disk under highly
intense laser radiation [19]. Bejan has discussed the
effect of electric and magnetic fields on the occurrence
of EIT in a double quantum dot (QD) system [20,21].
Very recently, Sahebi et al investigated EIT in a four-
level C-model of GaAs cylindrical QD with parabolic
potential [17].
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Among the aforementioned optical phenomena, those
related to exciton are onerous to treat theoretically due
to the inadequacy of analytical expressions for the wave
functions corresponding to the bound states of electron–
hole pairs. Excitons in quantum nanostructures have the
advantage of having discrete energy levels with the ben-
efits of large electric dipole moments and high nonlinear
optical coefficients. Electric dipole transitions between
excitonic states are in the THz range. Hence, excitonic
structures reveal a strong response to applied external
fields. Based on these properties, various studies on exci-
tonic quantum nanostructures that emphasise the inter-
action of excitons with high-intensity THz laser fields
have been submitted [5,22–24]. In the present paper,
EIT is investigated in an excitonic three-dimensional
QD with a parabolic potential in the presence of an
external static magnetic field, wherein a coupling laser
resonantly couples a low-lying excitonic ground level,
to one or higher levels, thereby inducing EIT for a
probe beam that measures absorption between two elec-
tric dipole forbidden energy levels. This transparency is
a consequence of the destructive interference between
the two excitation routes. While destructive interference
decreases the linear susceptibility, the non-linear sus-
ceptibility experiences constructive interference in the
spectral region of induced transparency of the medium
and hence is associated with steep dispersion. Exci-
tonic systems have Coulomb-bound states that can be
greatly altered by applied external fields, hydrostatic
pressure, temperature, etc. The hydrostatic pressure
amends the band-gap structure and energy shift occurs
without amending the structure of quantum nanostruc-
ture and the non-linear optical response can be greatly
enhanced by changing external pressure and tempera-
ture. The hydrostatic pressure variations of the physical
properties are beneficial for exploring the new phenom-
ena and have been considered both experimentally and
theoretically [25–29]. In addition to the impact of hydro-
static pressure and temperature on the process of EIT
induced in our QD system, we have also studied the
impact of strong confinement and weak confinement of
exciton in QD. Altogether, we have presented a wide,
broad and systematic overview of EIT in our excitonic
system. The method of EIT examined in this paper can
be used for realising various optoelectronic devices such
as all-optical switches, photovoltaic cells, light-emitting
diodes and modulators for the wavelength ranges con-
sistent with the excitonic transitions in QD.

The structure of the research paper is as follows: Sec-
tion 2 briefly presents the model of QD and the theory of
EIT. We have calculated the expressions of Hamiltonian,
the appropriate wave functions, energy levels, dipole
matrix elements and selection rules for the allowed tran-
sitions. The process of EIT is explained and analytical

expressions for susceptibility and group index (GI) are
obtained using the time evolution density matrix equa-
tion. Variation of effective masses, band gap and EIT
with external factors, specifically pressure and temper-
ature are also presented. In §3 the procured results for
variation in external factors and field, size of QD and
study of EIT with and without Coulomb interaction and
discussion of these results are reported. Finally, §4 gives
the main conclusion of our research paper.

2. Model and theory

2.1 Exciton in a quantum dot

An exciton is a bound state of an electron and a hole
with more closely matched effective masses, bound
to each other by the electrostatic Coulomb force of
attraction. Inside a QD, an exciton is formed when a
material absorbs a photon having energy more than its
band gap. This excites an electron from the valence
band into the conduction band. This formation is anal-
ogous to the hydrogen atom with discrete energy states.
The transition energies in the excitonic QD systems
are close to the meV range. Accordingly, they can be
controlled by the external fields that stimulate tran-
sitions in this range. We study an exciton confined
in a three-dimensional GaAs/AlxGa1−x QD with a
parabolic confinement potential. In the presence of a
transverse magnetic field, the Hamiltonian, employing
the effective mass approximation can be expressed as

H = 1

2m∗
e

(
�pe + e �Ae

c

)2

+ 1

2
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eω
2
er
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Here, e is the free electron charge, c is the speed of light
in free space and m∗

e(h) is the effective mass of the elec-
tron (hole), ωe and ωh are, respectively, the confinement
frequencies of the electron and the hole and εr is the
dielectric constant of the medium. Both m∗

e(h) and εr are
dependent on pressure and temperature variations. The
positions of electron and hole are described by vectors
�re and �rh . The eigenvalues and wave functions of the
whole Hamiltonian are calculated using the method of
numerical diagonalisation of Hamiltonian explained in
detail in our recent research paper [30]. Here we give
a brief overview of the computation of energy eigen-
values, selection rules for allowed transitions between
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any two excitonic states and the corresponding non-zero
dipole matrix elements.

The total Hamiltonian can be separated into relative
coordinate �r and the centre-of-mass coordinate (c.m.)�R, defined by

�R = (m∗
e�re + m∗

h�rh)/M.
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M

as the total and reduced mass, respectively. With the
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Decomposing the full Hamiltonian and using the atomic
units everywhere (� = e = me = 1

4πε0
= 1) as

H=Hcm+Hrel+Hℵ+HC , (3)

where
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e
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Hcm, Hrel, Hℵ and HC denote the c.m., relative and
cross term of the Hamiltonian, respectively. Hℵ is the

cross term Hamiltonian consisting of both c.m. and rel-
ative coordinates and HC is the electrostatic-interaction
term between the electron and the hole. Using spheri-
cal polar coordinates (r, θ, φ) in the symmetric gauge,
wherein Ar = Aθ = 0 and

Aφ = Br sin θ

2
Hrel can be simplified to
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where ωb = eB. Hrel can be further fragmented as
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and
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Hamiltonian can be resolved into two parts: unperturbed
Hamiltonian,
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and perturbed Hamiltonian

HI = H I
r + Hℵ + HC .

The eigenvalues and wave functions of the whole
Hamiltonian are calculated using the method of numer-
ical diagonalisation of the Hamiltonian. The following
expressions for the eigenvalue and eigenfunction for the
unperturbed relative Hamiltonian Ho

r are obtained:
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c.m. Hamiltonian H0
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so that the unperturbed energies are

E0 = E
0
nlm + E0

NLM (9)

with unperturbed wave function given by the product of
c.m. and relative wave function

�NLMnlm = XNLM (P, �, 
) ψnlm (ρ, θ, φ) . (10)

�NLMnlm acts as a basis wave function to find the
total wave functions for the whole system.

The interaction of excitonic QD system with a linearly
polarised periodic electromagnetic radiation (angular
frequency ω and direction of polarisation z) is of the
form

�E(t) = 2 �E0 cos(ωt) = �E0(e
iωt + e−iωt ).

The electric dipole transition matrix element between
any two states i and f is obtained by solving the matrix
element

M f i = 〈i | −�μ · �E | f 〉 = 〈nlm | E0er cos θ | n′l ′m′〉
= 〈er〉E0

∫
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Cp,q are reduced spherical harmonics given by

Cp,q =
√

4π

2p + 1
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Integrals involving the reduced spherical harmonics are
related to the Wigner 3-j symbols related to Clebsch–
Gordan coefficients. The integral in eq. (11) can be
solved to obtain
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∫
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Only those transitions are dipole allowed for which
electric dipole moment and hence values of Wigner 3-j
symbols are non-zero. Based on this analysis, we find the
following selection rules for allowed optical transitions:
l + l ′ + 1 = even and m = m.

Various theoretical studies of excitons confined in
spherical QDs with parabolic potentials have been
reported. The key aspect of these researches is that the
same confinement frequency of the parabolic potential
for both the electron and the hole is chosen by the
authors. However, the dimension of QD depends on
both the carriers confined in regions of space with unlike
radii. In this context, we describe the dimension of QD
using the length scale L=√

LeLh where

Le(h)=
√

�

μωe(h)

.

To determine the type of confinement of the exciton, we
can compare it with the exciton Bohr radius

a∗
B=εr�

2

μe2 .

If the Coulomb term related to the relative coordinates
is very small and can be neglected, i.e., L≤a∗

B , we
get the strong confinement limit (SCL). In this limit,
Coulomb term is dealt with as a perturbation and elec-
trons and holes show uncorrelated behaviour. If the
Coulomb interaction leads the state of the exciton, we
get the weak confinement limit (WCL), L≥a∗

B , i.e., the
QD radius is greater than the Bohr radius of both elec-
tron and hole. This situation corresponds to large-sized
QDs.

2.2 EIT formalism

Let us consider the internal dynamics of the system to be
described by a three-level ladder-type or cascade config-
uration provided by the exciton levels in the introduced
QD system: the ground state |g〉 and the excited states
|e1〉 and |e2〉. The system is assumed to be initially in
the ground state. The transitions between three levels are
initiated by two laser beams, the probe laser field ωp and
the coupling laser field ωc as illustrated in figure 1.

The probe beam measures the absorption spectra for
the transition between the ground state |g〉 and the
excited state |e1〉 and the applied strong coupler beam
couples the energy states |e1〉 and |e2〉. In this scheme,
the transition between the states |g〉 and the excited
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Figure 1. Three-level ladder scheme for realising EIT in
excitonic QD system.

states |e2〉 is forbidden by the dipole interaction of the
electric field and transitions between |g〉 → |e1〉 and
|e1〉 → |e2〉 are dipole allowed. In EIT, generally, when
an electromagnetic field of frequency equal to ωg,e1 is
applied, excitons in the ground state |g〉 can absorb
energy and transit to the state |e1〉. But, when a coupling
electromagnetic field resonant with the |e1〉 → |e2〉
transition is also applied, there are two transition path-
ways by which an exciton can get from the ground state
to the excited state: the transition can be either in the
same way as earlier, or along |g〉 → |e1〉 → |e2〉.
These two allowed transition routes can destructively
interfere, and under a suitable environment, this results
in zero probe absorption at resonance. This interference
effect, making an opaque medium transparent, is the
core of EIT. Mathematically, the whole process in the
excitonic ladder system can be understood by the gen-
eral results obtained as follows:

The net applied electric field is the superposition of
the probe and the coupler beams:

�E(t) = �E p(t) cos ωp(t) + �Ec(t) cos ωc(t).

�p = Ep
∣∣μg,e1

∣∣
�

and

�c = Ec
∣∣μe1,e2

∣∣
�

are the rf Rabi frequencies for the probe and the cou-
pling fields, respectively. If �ωi j is the energy difference
between the levels i and j then �p = ωp − ωg,e1 and
�c = ωc − ωe1,e2 are the respective detuning between
the field and the corresponding transition. Here, �ωi j is
the energy difference between the levels i and j. Assum-
ing that wavelengths of the probe and the coupler beams
are considerably longer than the effective dimensions
of QD, the electric dipole approximation is invoked and
electric fields are assumed to be independent of the coor-
dinate term.

To describe the interaction with the optical fields and
a model three-level system, we solve the equation of
motion for the density matrix for the stationary QD sys-
tem. The time evolution of the populations of the states
is governed by the Liouville equation

∂ρ

∂t
= 1

i�
〈n | [H0 + HI , ρ] |m〉 − 1

2
{�, ρ} , (13)

where � is the relaxation matrix defined for any state as
� = γm |m〉 〈m |. γ ′s can be related to the rate at which
the different elements of the density matrix ρ thermalise.
Total Hamiltonian of the QD system is given by

H = H0 + HI (t) , (14)

where H0 represents the unperturbed Hamiltonian and
HI = �μ · �E(t) describes the interaction between the
system and the probe-coupler beams. Here, μnm =
〈n | �μ |m〉 · ε̂i where |m〉 is an eigenket of H0 and ε̂i is
a unit vector along the direction of the electromagnetic
field propagation. For a spherically symmetric system,
μgg = μe1,e1 = μe2,e2 = 0. We have also assumed
that the transition between the states |g〉 and the excited
states |e2〉 is forbidden by dipole interaction of the elec-
tric field, i.e. μg,e2 = 0.

Using the dipole and rotating wave approximations,
the evolution of this system in a steady state can be
described by the density matrix formalism [31,32]

ρe1,g = − i[�p
(
ρg,g − ρe1,e1

) − �∗
cρe2,g]

2
(
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) (15)

ρe2,e1 = − i[�c
(
ρe2,e2 − ρe1,e1

) + �∗
pρe2,g]

2
(
γe2,e1 − i�c

) (16)

ρe2,g = − i[�pρe2,e1 − �cρe1,g]
2[γe2,g − i

(
�p + �c

)] (17)

ρe1,e1 = i

2�e1
(�∗

pρe1,g − �pρg,e1) (18)
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ρe2,e2 = i

2�e2

(
�∗

cρe2,e1 − �cρe1,e2
)
. (19)

With the strong coupler beam, Gea-Banacloche et al
[33] showed that only ρe1,g will contribute to the
dispersion and absorption of the medium. This is exper-
imentally achievable by exposing the system to the
coupler laser for some time before the probe laser is
switched on, the dispersion and the absorption are calcu-
lated by solving in an adiabatic regime. The expression
so obtained is

ρe1,g = i�p

2
(
i�p − γe1,g

) + |�c|2
2i(�p+�c)−cc

(20)
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and this is related to the complex susceptibility χ(ωp) =
χ1 + iχ2 as

χ = −2σμ2
e1,gρe1,g

ε0��p
. (21)

Here, σ is the density of excitons. With simpler alge-
bra, the final expression for the real and imaginary parts
of χ is obtained as follows:

χ1 = σμ2
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where

G = |�c|2 γe2,g
(
�p − �c

)
4[(�p − �c

)2 + γ 2
e2,g]

.

The real and imaginary parts of χ
(
ωp

)
describe absorp-

tion coefficient (AC), α
(
ωp

)
, and the refractive index

(RI) or (dispersion), nr
(
ωp

)
, from the relations

α
(
ωp

) = ωp

c
χ2

(
ωp

)
(24)
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(
ωp

) = 1 + 1

2
χ1

(
ωp

)
. (25)

When the frequency of a particular transition is consis-
tent with the frequency of incident radiation, a resonance
phenomenon happens. Light propagation is then supple-
mented by strong absorption and dispersion. Harris and
Hau [34] observed that sizeable dispersion of refractive
index in the EIT window can be used to lessen the group
velocity of light pulses up to 10−102 m/s [35]. When a
light pulse enters a dispersive linear medium, the light
pulse propagates at the group velocity

vg = c

ng
,

where

vg = c

1 + nr
(
ωp

) + ωp
∂

∂ωp
nr

(
ωp

) (26)

and ng is the group refractive index given by

ng = 1 + χ1

2
+ ωp

2

∂χ1

∂ωp
. (27)

It can be observed that vg depends on χ1 and its deriva-
tives. When χ1 is zero, and the dispersion is very steep
and positive, the group velocity is significantly reduced,
i.e., subluminal (vg < c) which is slow light forng > 1.
However, when the dispersion is anomalous, i.e., super-
luminal, |ng| < 1. The negative slope of dispersion
corresponds to superluminal light propagation, while
the positive slope shows subluminal light propagation
[36]. Consequently, the group velocity of a pulse passing
through a medium can even be faster than the velocity
of light in vacuum, c, without challenging the causality
principle.

2.3 The effects of hydrostatic pressure
and temperature

The hydrostatic pressure alters the band structure of
the heterostructure and leads to changes in the proper-
ties of the elementary excitations of the heterostructure
systems. The application of hydrostatic pressure and
temperature modifies the effective mass, dielectric con-
stant, band gap and hence, size of QD. The explicit
expressions for these quantities as a function of the
hydrostatic pressure and temperature [37,38] can be
written as

m∗
e (P, T )

me
=

[
1 + E�

P

{
2E�

g (P, T )
−1

+
(
E�
g (P, T ) + �0

)−1}]
, (28)

wherem∗
e (P, T ) is the pressure- and temperature-

dependent free-electron mass, E�
P is the energy related

to momentum-matrix element, �0 = 0.341 eV is
the spin–orbit splitting. E�

g(P,T ) is the pressure- and
temperature-dependent energy gap for GaAs at the �-
point in units of eV given by

E�
g (P,T ) = E�

g (0, T ) + αP + βP2, (29)

where

α = 1.26 × 10 −2 eV kbar−1,

β = 3.77 × 10−5 eV kbar−2,

E�
g (0, T ) = 1.519 − 5.405 × 10−4T 2

T + 204
eV.

The effective mass of AlxGa1−xAs is: m∗
b (P, T ) =

m∗
d (P, T ) + 0.083x . Here, x denotes the aluminium
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content. The hydrostatic pressure- and temperature-
dependent valence band effective mass is given by

m∗
h(P, T )

mh

= (
0.09 − 0.20 × 10−3P − 3.55 × 10−5T

)
. (30)

The pressure- and temperature-dependent static dielec-
tric constant of GaAs is written as

ε (P, T ) =
{

12.74 exp
(−1.73 × 10−3P

)
exp

[
9.4 × 10−5 (T − 75.6)

]
for T< 200 K

13.18 exp
(−1.73 × 10−3P

)
exp

[
20.4 × 10−5 (T − 300)

]
for T> 200 K

(31)

In the next section, we present and discuss our results
obtained for the phenomena of EIT with variation
in external magnetic field, pressure, temperature and
dimensions of QD.

3. Numerical results and discussion

In the following, we shall discuss the effects of confine-
ment, external magnetic field, hydrostatic pressure and
temperature on EIT and GI of an exciton confined in a
typical three-dimensional spherical GaAs/AlxGa1−xAs
QD with a parabolic confinement potential exposed
to probe-coupler beams. For numerical calculations,
we utilised the following material parameters: effec-
tive mass of the electron (e) and heavy hole (hh) at
zero pressure and temperature are, respectively, m∗

e =

0.067m0 and m∗
hh = 0.377m0 (m0 is the free elec-

tron mass), σ = 1 × 1020 m−3, γe2,g = (0.01 ps)−1,
ε0 = 8.85 × 10−12 Fm−1. For all the calculations
ωe = 2ωh , γe1,g = 10−4γe2,g and the size of QD is
approx. 10 nm, unless otherwise stated. To examine the
EIT effect, we focus on the real and imaginary parts
of susceptibility, χ1 and χ2, respectively. The real and
imaginary parts of susceptibilities are proportional to

dispersion and absorption, respectively, as can be cal-
culated using eqs (22) and (23). The levels considered
to study the process of EIT are |320300〉, |320310〉 and
|320320〉. The transition between the levels |320300〉
corresponding to the ground state |g〉 and |320320〉 cor-
responding to the excited state |e2〉 are forbidden based
on the selection rules. Hence, the electric dipole matrix
element μg,e2 = 0 for transitions between the states with
the same parity. In the beginning, it is important to note
that the energy level separations �e1,g and the squared
dipole matrix elements μ2

e1,g are the primary parameters
that affect the position and crest values of susceptibility
curves, respectively.

In figure 2, we illustrate the effects of rabi frequency
on χ1 and χ2. As can be observed, χ2 and hence
absorption is maximum when the coupler laser field is
turned off (�c = 0) and only the probe field is applied.
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Figure 2. Variation of χ1 and χ2 with detuning of the probe field for different rabi frequencies �C .
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Figure 3. Variation of χ1 and χ2 with the energy of the probe field for different magnetic field strengths.

Further, the real and imaginary parts of the susceptibility
are given by

χ1 = σμ2
e1,g

ε0�

(
−�p

−�2
p+γ 2

e1,g

)

χ2 = σμ2
e1,g

ε0�

(
γe1,g

−�p
2+γ 2

e1,g

)
.

χ2 has a Lorentzian shape with a maximum value
when the probe field is in resonance with energy levels
so that �p= 0. At this point, χ2 attains zero value. As the
coupler field is ignited with detuning �c = 0 (to ensure
the greatest absorption), a transparency interface gets
opened up in the opaque quantum system, the absorp-
tion depicts a doublet and resembles an Autler Townes
doublet centred on �p= 0. It is observed that χ1 and
χ2 become zero at specific probe frequencies which
means that the absorption is zero and the refractive
index closely equals unity. However, the restricted trans-
parency resonance is supplemented by a very abrupt
variation of the refractive index with the frequency of
the probe field. Hence, the medium changes to a trans-
parent medium for the coupler light. The population of
the atoms gets confined in the lowest state, making it a
dark state preserving the other two states virtually unoc-
cupied.

The influence of magnetic field, B, on the absorp-
tion and dispersion profiles of the quantum system is
shown in figure 3, keeping the temperature and pressure
fixed at 100 K and 100 kbar, respectively. The magnetic
field provides an added confinement and can be used to

alter the confinement of electron–hole pairs. The applied
magnetic field also lifts the energy degeneracy. The con-
finement frequency of the hole is kept at 3.95 ×1013 Hz.
The dashed black line is the normal absorption and dis-
persion curve in the QD system when the coupler field
is not switched on for B = 0 T. A TW opens up when
the coupler field is ignited. Further, from figure 3, the
change in crest values of susceptibilities can also be
examined with a change in values of field strength. There
are two ways to explain this observation. First, as B
increases, the confinement of charge carriers decreases,
due to which there is a decrease in the effective quantum
length of the QD and hence wave functions squeeze in
a smaller region. Secondly, while the coupler laser field
is held at a constant value equal to 1.54 × 109 V/m, the
coupler field Rabi frequency decreases with augmenta-
tion in external field strength. Both expositions result in
decreased overlap of different exciton states, and subse-
quently μe1,g falls. As the change in crest values of real
and imaginary parts of χ largely comes from the changes
in the square of the dipole transition matrix element, the
magnitude of crest values decreases with B. Further, it
is observed that on increasing the strength of the field,
separation between energy levels gets enhanced inside
the QD, causing an increase in excitonic transition ener-
gies. This results in a blue-shift of susceptibility curves
with enhancement in magnetic field strength. However,
the width of the TW is not much affected by B.

In figure 4, we present the variation of real and imag-
inary parts of susceptibility of an excitonic QD for
different sizes of QD. As the size of QD increases,
there is an increase in the crest values of real and
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Figure 4. Variation of χ1 and χ2 with the energy of the probe field for different sizes of QD.
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Figure 5. The variation of χ1 and χ2 with the energy of the probe field for different values of hydrostatic pressure.

imaginary parts of susceptibility. Further, EIT occurs at
lower probe energies. The physical reason behind this
is that as the dimension of QD increases, the transition
energies decrease as the excitons are now bound in small
space and hence curves shift to lower probe energies
(red-shift). Additionally, the increase in quantum con-
finement leads to an increase in dipole matrix elements,
due to which crest values increase. The TW gets finer

as the size of QD reduces. Similar results are obtained
by Azizi and Vaseghi [39] in the QD system.

In figure 5, we plot the variation of susceptibilities of
an excitonic QD as a function of �ωp for different values
of hydrostatic pressure keeping the temperature constant
at 200 K. The figures show that an increase in pressure
increases the crest values of χ1 and χ2 and moves them
toward lower probe energy values. By analysing eqs (22)
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Figure 6. Variation of χ1and χ2 with the energy of the probe field for different values of temperature.
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Figure 7. Variation of χ1 and χ2 with the energy of the probe field for SCL and WCL.

and (23), it can be seen that the red- or blue-shift of
the curves is mainly associated with the energy separa-
tion of levels associated with the transition. �Ee1,g, in
principle, should increase and |μe1,g| should decrease
with increasing pressure owing to an increase in con-
finement. However, in our study, we found that as the
pressure increases, the reverse happens that induces a
red-shift in the curves and an increase in crest val-
ues. This may be attributed to the fact that both the
dielectric constant and effective masses of the confined

electron and hole also have functional dependence on
pressure and temperature, in addition to quantum con-
finement. In our problem, it is observed that the effect
of effective masses of electron and hole dominates over
quantum confinement effect. An increase (decrease) in
pressure increases the effective masses of the electron
(hole) so that the reduced mass of electron and hole,
μ, decreases. This increases the effective QD length
as L depends on μ, the reduced mass of electron and
hole. This decreases the confinement effect, inducing a
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Figure 8. Plots of the GI with the probe field energy for the magnetic field, hydrostatic pressure and temperature changes.

red-shift in their crest positions and a fall in their crest
values, as can be observed in figure 5. Thus, effective
masses of charge carriers and dielectric constant play a
major role in manipulating the effective size of QD. The
TW also expands with increasing pressure.

In figure 6, we plot the variation of absorption and
dispersion spectra of the system with probe energy for
different values of temperature. The figure shows that
as temperature increases, the crest values of absorption
and dispersion curves increase and positions suffer red-
shift. This occurs because as temperature increases, the
reduced mass falls off. As already discussed, this results
in the increase of the effective length of QD that shifts
the crest positions towards low energies and increase in
their magnitudes.

In figure 7 we plot the variation for χ1 and χ2 with
probe field energy in two different limits: SCL and
WCL. In SCL, the impact of the carrier confinement
is more significant than the effects related to the elec-
trostatic interaction. Due to the strong confinement of
carriers, the electrostatic interaction between electrons
and holes can be ignored, thereby carriers are bound in a
smaller QD and excitonic energy level spacing is large.
In the WCL, the excitonic level spacing decreases due
to which the curve suffers blue-shift. Further, in SCL,
due to an increase in carrier confinement, the wave func-
tion is now spread in a smaller QD, which results in the
decreasing behaviour of the dipole matrix elements and
height of the susceptibility crests.

Figure 8 shows the variation of GI, ng, with the vari-
ation in magnetic field, pressure and temperature. In
every case, if ng > 1, the group velocity of the incident
radiation is small compared to c, thus the propagation
of radiation is subluminal. However, if 0 < ng < 1,
the group velocity of the radiation is larger than c or it
becomes negative, thus the propagation of radiation is
superluminal. In every variation shown above, the group
velocity of a light pulse can be determined by the slope
of χ2 or the dispersion curve. The negative slope of
dispersion corresponds to superluminal light propaga-
tion, while the positive slope shows subluminal light
propagation. The application of the magnetic field does
not have a noticeable impact on TW and the width of
TW is almost unchanged. Thus, the sub and superlumi-
nal frequency intervals remain stable but show a blue
shift with increasing magnetic field. For other results,
the variation in GI can be explained by variation in
the slope of χ2. Subluminal and superluminal frequency
intervals are also affected by the changes in pressure and
temperature and they display the same effects as exhib-
ited in figures 5 and 6. The physical reasons behind these
results have already been explained.

4. Conclusion

In summary, we calculated the energy eigenvalues,
the corresponding wave functions and dipole matrix
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elements of an exciton confined in a spherical QD
in the presence of static magnetic field. The results
obtained are exploited to understand the process of EIT
and explore the effects of external factors, specifically
external static magnetic field, hydrostatic pressure and
temperature on the EIT and the GI of a probe laser light.
The effect of QD dimensions and confinement limits of
exciton are also examined. The results are peculiar to the
process of EIT. The forte of our paper is the simplicity of
calculations taking into account electrostatic Coulomb
interaction between electron and hole. We anticipate that
it will strengthen our understanding of the optical prop-
erties of confined excitons in quantum nanostructures
and beneficial towards manufacturing various optoelec-
tronic devices.
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