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Abstract. We use the quantum Langevin equation as a starting point to study the response function, the position–
velocity correlation function and the velocity autocorrelation function of a charged quantum Brownian particle in
the presence of a magnetic field and linearly coupled to a heat bath via position coordinate. We study two bath models
– the Ohmic bath model and the Drude bath model and make a detailed comparison in various time–temperature
regimes. For both bath models, there is a competition between the cyclotron frequency and the viscous damping
rate giving rise to a transition from an oscillatory to a monotonic behaviour as the damping rate is increased. In the
zero point fluctuation dominated low-temperature regime, non-trivial noise correlations lead to some interesting
features in this transition. We study the role of the memory time-scale which comes into play in the Drude model
and study the effect of this additional time-scale. We discuss the experimental implications of our analysis in the
context of experiments in cold ions.
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1. Introduction

The response function of a system, which measures the
response of a system to an external perturbation, charac-
terises the intrinsic properties of the system, for instance,
electric polarisability, magnetic susceptibility and so on
[1]. Thus, the response function of a system is of central
importance in the realm of non-equilibrium statistical
mechanics [2].

In recent years, there have been theoretical and
experimental research on diffusion in oscillatory and
damped regimes. In particular, Bloch oscillations and
their damping due to spontaneous emission have been
studied in the context of cold atoms in optical lattices
[3,4].

In the earlier work [3,4], the researchers addressed
the issue of Brownian motion of neutral particles, which
signifies the erratic motion of particles suspended in a
fluid, caused by the random collision of the particle with

the molecules present in the viscous medium [5]. On
the contrary, here we consider the motion of a charged
particle in the presence of a magnetic field in a viscous
environment. Moreover, there has been a study of the
classical Langevin dynamics of a charged particle in a
magnetic field in the high-temperature classical domain
[6].

In contrast, in this paper we focus on analysing
the position response function of a charged particle
in a viscous environment in the presence of a mag-
netic field using the quantum Langevin equation (QLE).
The system under consideration is characterised by
two competing rates: the cyclotron frequency ωc =
qB/mc, where m is the mass of the particle, q is the
charge, c is the speed of light, B is the strength of
the magnetic field and γ is the rate associated with
dissipation. Dattagupta and Singh [7] analysed such a
system. However, we go beyond that study and explore
various time regimes and analyse in detail the onset
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of oscillatory response of this system for two dif-
ferent bath models – the Ohmic bath and the Drude
bath models. In the Drude bath model, there is an
additional time-scale, the memory time τ which intro-
duces some interesting quantitative effects. We also
study the behaviour of the position–velocity correla-
tion function and the velocity autocorrelation function
in various time–temperature regimes for the two bath
models.

The paper is organised as follows. In §2 we intro-
duce the quantum Langevin equation and define the
response function, the position–velocity correlation
function and the velocity autocorrelation function. In
§3 we analyse the position response function for the
Ohmic model and the Drude model. In §4 we anal-
yse the position–velocity correlation function for the
two models and in §5 we analyse the velocity auto-
correlation function for the system for the two bath
models. In §6 we discuss the results of our study and
compare the behaviour of the response function, the
position–velocity correlation function and the veloc-
ity autocorrelation function for the two bath models
at various time–temperature regimes. In §7 we dis-
cuss the experimental implications of our study and
finally in §8 we end the paper with some concluding
remarks.

2. Position correlation function in the presence of a
magnetic field

The Hamiltonian for the motion of a charged quantum
Brownian particle in the presence of a magnetic field and
linearly coupled via position coordinate to a passive heat
bath, characterised by the bath in thermal equilibrium is
given by [8,9]

H = 1

2m

(
p − q A

c

)2

+
∑
j

[
p2
j

2m j
+ 1

2
m jω

2
j

(
q j − r

)2

]
. (1)

where m, q, r, p are the mass, charge, position and
momentum of the particle respectively, whereasm j , q j ,

p j and ω j are the mass, position coordinate, momentum
coordinate and frequency of the j th oscillator in the bath
respectively. A(r) represents the vector potential corre-
sponding to the applied magnetic field. We derive the
QLE for this system. Below we outline the basic steps
used in the derivation of the QLE: (i) We first obtain
the Heisenberg equations of motion for the heat bath

and the system of the charged particle linearly coupled
to the heat bath via position coordinate. We then solve
these equations for the bath variables, and substitute the
solution into the equations for the charged particle to
obtain a reduced description of the particle motion. The
solution contains explicit expressions for the dynami-
cal variables at time t in terms of their initial values.
(ii) We make specific assumptions about the initial state
of the system. For instance, we assume that the heat
bath was at thermal equilibrium, which is satisfied by
the Fourier transform of the memory function being a
positive real function [8]. Thus, the generalised QLE
is formulated from the Hamiltonian (eq. (1)), where
the effect of the passive heat bath is only retained in
the memory kernel and the random fluctuating force
[8,10–12]:

m �̈r(t) = −
∫

μ(t − t ′)�̇r(t ′)dt ′ + q

c
(�̇r(t) × �B) + �F(t),

(2)

where μ(t) is the memory kernel and �F(t) is the random
force having the following properties [8,12]:

〈Fα(t)〉 = 0 (3)

1

2
〈{Fα(t), Fβ(0)}〉

= δαβ

2π

∫ ∞

−∞
dωRe[μ(ω)]h̄ω coth

(
h̄ω

2kBT

)
e−iωt

(4)

〈[Fα(t), Fβ(0)]〉 = δαβ

π

∫ ∞

−∞
dωReμ(ω)]h̄ωe−iωt .

(5)

Here α, β = x, y, z and δαβ is the Kronecker delta func-
tion. Also μ(ω) = ∫ ∞

−∞ dtμ(t)eiωt .
We consider a uniform magnetic field along the z-axis.

This results in the following solutions to the motion of
the charged particle in the x–y plane [12]:

x̃(ω) = 1

m

iωc F̃y(ω) − (ω − i K (ω))F̃x (ω)

ω[ω2 − ω2
c − K̃ (ω)2 − 2iωK̃ (ω)] (6)

ỹ(ω) = 1

m

−iωc F̃x (ω) − (ω − i K (ω))Fy(ω)

ω[ω2 − ω2
c − K̃ (ω)2 − 2iωK̃ (ω)] . (7)

Here, ωc = (eB/mc) is the cyclotron frequency,
K (ω) = (μ(ω)/m). Using properties of the random
force [13], we can write the position autocorrelation
function for the x, y components [12],
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Cx (t) = 1

2
〈{x(t), x(0)}〉 = h̄

2π

∫ ∞

−∞
dωRe[K (ω)]

×
[
(ω + Im[K (ω)])2 + ω2

c + Re[K (ω)]2
]

coth
(

h̄ω
2kBT

)
e−iωt

mω
{[

(ω + Im[K (ω)])2 + ω2
c + Re[K (ω)]2

]2 − 4ω2
c (ω + Im[K (ω)])2

} . (8)

The same expression is obtained for the y component
Cy(t) = 1

2 〈{y(t), y(0)}〉. Using the position autocorre-
lation function one can get various physical observables
such as the mean square displacement, response func-
tion, position–velocity correlation function and velocity
autocorrelation function. In ref. [12], the mean square
displacement has been analysed in detail. In the follow-
ing subsections, we shall discuss the expressions for the
response function, position–velocity correlation func-
tion and velocity autocorrelation function, all evaluated
using the position correlation function (defined in eq.
(8)) as a starting point. We analyse the behaviour of
these observables in various time–temperature regimes
for two bath models – the Ohmic model and the Drude
model.

2.1 Response function

The response function pertaining to an external pertur-
bation f (t) is given by

〈x(t)〉 =
∫

R(t − t ′) f (t ′)dt ′. (9)

In the Fourier domain, the response function Rx (ω) can
be expressed in terms of the position correlation function
Cx (ω) as follows [1,14]:

ImRx (ω) = 1

h̄
tanh

(
h̄ω

2kBT

)
Cx (ω). (10)

From eq. (8), we get

Cx (ω) = h̄

m
Re[K (ω)]

[(ω + Im[K (ω)])2 + ω2
c + Re[K (ω)]2]coth

(
h̄ω

2kBT

)

ω
{[

(ω + Im[K (ω)])2 + ω2
c + Re[K (ω)]2

]2 − 4ω2
c (ω + Im[K (ω)])2

} . (11)

Using eqs (10) and (11), we get

Im Rx (ω) = 1

m
Re[K (ω)] [(ω + Im[K (ω)])2 + ω2

c + Re[K (ω)]2]
ω{[(ω + Im[K (ω)])2 + ω2

c + Re[K (ω)]2]2 − 4ω2
c(ω + Im[K (ω)])2} . (12)

Knowing ImRx (ω), one can get the expression for
ReRx (ω) using the Kramers Kronig relation [15]

ReRx (ω) = 1

π
P

∫ ∞

−∞
ω′ Im Rx (ω

′)
(ω′2 − ω2)

dω′, (13)

where P refers to the principal value of the integral.
Collecting the real and imaginary parts we get,

Rx (ω) = Re Rx (ω)+i Im Rx (ω), the Fourier transform
of which gives the time-dependent position response
function Rx (t),

Rx (t) = 1

2π

∫ ∞

−∞
Rx (ω)e−iωt = F [Rx (ω)]

= F [Re Rx (ω)] + iF [Im Rx (ω)] . (14)

2.2 Position–velocity correlation function

The position–velocity correlation function is defined as

Cxvx (t) = 1

2
〈{x(t), vx (0)}〉 = 1

2
〈{x(0), vx (−t)}〉

= d

dt

1

2
〈{x(t), x(0)}〉 = d

dt
Cx (t). (15)

Using eq. (8), we get

Cxvx (t) = −i h̄

2πm

∫ ∞

−∞
dω Re[K (ω)] [(ω + Im[K (ω)])2 + ω2

c + Re[K (ω)]2]coth( h̄ω
2kBT

)e−iωt

{[(ω + Im[K (ω)])2 + ω2
c + Re[K (ω)]2]2 − 4ω2

c(ω + Im[K (ω)])2} . (16)
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2.3 Velocity autocorrelation function

The velocity autocorrelation function is defined as

Cvx (t) = 1

2
〈{vx (t), vx (0)}〉 = − d2

dt2Cx (t) (17)

Cvx (t) = h̄

2πm

∫ ∞

−∞
dω ω Re[K (ω)] [(ω + Im[K (ω)])2 + ω2

c + Re[K (ω)]2]coth( h̄ω
2kBT

)e−iωt

{[(ω + Im[K (ω)])2 + ω2
c + Re[K (ω)]2]2 − 4ω2

c(ω + Im[K (ω)])2} . (18)

Since the expression for the y component position
autocorrelation function is the same as that for the x
component, we get the same expressions for all the phys-
ical observables corresponding to the y component as
well. Note that the expressions for the response func-
tion, position–velocity correlation function and velocity
autocorrelation function are valid for any memory ker-
nel K (t). In the next section, we use specific models
for the memory kernel and analyse the forms of the
response function, position–velocity correlation func-
tion and velocity autocorrelation function for each case.
The models we analyse are [16]

1. The Ohmic model : K (t) = 2γ δ(t)
2. The Drude model : K (t) = γ

τ
e−t/τ .

The Ohmic model corresponds to a memory less or
Markovian bath while the Drude model corresponds to
an exponentially decaying memory (τ is the memory
time) and is non-Markovian. Here, γ is the decay rate
associated with dissipation, as mentioned in the previ-
ous section.

3. The response function

3.1 Ohmic model

In this case, the memory kernel is given by K (ω) = γ ,
hence the imaginary part of the response function (eq.
(12)) is given by

Im Rx (ω) = γ

m

(ω2 + ω2
c + γ 2)

ω
[
(ω2 + ω2

c + γ 2)2 − 4ω2ω2
c

] . (19)

The real part Re Rx (ω) can be obtained using the
Kramers Kronig relation (eq. (13)),

Re Rx (ω) = γ

mπ

∫ ∞

−∞
dω′

(ω′2 − ω2)

× (ω′2 + ω2
c + γ 2)

[(ω′2 + ω2
c + γ 2)2 − 4ω′2ω2

c ]
. (20)

Using Cauchy’s residue theorem, the above integral can
be solved and is given by

Re Rx (ω) = − 1

m

[ −ω2
c + ω2 + γ 2

(ω2 + ω2
c + γ 2)2 − 4ω2ω2

c

]
. (21)

The Fourier transforms of eqs (19) and (21) give

F(Im Rx (ω)) = −ie−γ t

2m

[
ωc sin(ωct) − γ cos(ωct)

ω2
c + γ 2

]

− i

m

[
γ

ω2
c + γ 2

]
(22)

F(Re Rx (ω)) = e−γ t

2m

[
ωc sin(ωct) − γ cos(ωct)

ω2
c + γ 2

]
.

(23)

Here it can be noticed that the memory kernel satisfies
causality, K (t) = 0, t < 0, which implies that the inte-
grands appearing in the Fourier transforms are analytic
in the upper half plane and can have poles only in the
lower half plane.

The poles lying in the lower half plane for the Ohmic
case are: ω = ±ωc − iγ . Equations (22) and (23) are
given by (−2π i) times the sum of the residues at the
respective poles. Combining the above using eq. (14),
we get

Rx (t) =
[
γ − e−γ t (γ cos(ωct) − ωc sin(ωct))

m(ω2
c + γ 2)

]
.

(24)

In the absence of the magnetic field, for ωc → 0, we get
the expected response function of a particle coupled to
an Ohmic bath [17], which is

Rx (t) = 1

m

[
1 − e−γ t

γ

]
. (25)

3.2 Drude model

In this case, the memory kernel in the frequency domain
is given by

K (ω) = γ

1 + ω2τ 2 + i
ωγ τ

1 + ω2τ 2 . (26)
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Here τ is the memory time. Note that for τ → 0, the
Drude model kernel gives the same expression as the
Ohmic model kernel.

Re K (ω) = γ

1 + ω2τ 2 , Im K (ω) = ωγ τ

1 + ω2τ 2 . (27)

Following steps similar to the ones used in the case of
the Ohmic model, we substitute Re K (ω) and Im K (ω)

in eq. (12) and obtain the response function for the
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Figure 1. Time evolution of the response function. (Top)
The underdamped (ωc = 10, γ = 1), (middle) the over-
damped (ωc = 1 , γ = 100) and (bottom) the critically
damped (ωc = 1, γ = 1) cases. For all the cases, the solid
blue line is for the Ohmic case using eq. (24), the double
dot-dash red line is for the Drude case τ = 0, the dashed
black line is for τ = 0.5 and the dot-dash green line is for
τ = 1.

Drude model. The relevant integrals pertaining to the
response function have been solved numerically since
the expressions involved are cumbersome and thus can-
not be solved analytically.

We now explore the roles of various frequencies: the
cyclotron frequency ωc and the damping rate γ . In this
context, we studied three different regimes: (i) Under-
damped (ωc 	 γ ), (ii) overdamped (ωc 
 γ ) and (iii)
critically damped (ωc ∼ γ ).

Figure 1 shows the time evolution of the response
function for both the Ohmic and Drude models. For the
Drude model, there is an additional time-scale, the mem-
ory time τ which comes into play. We have checked
the time evolution for various τ values and noticed that
the presence of τ affects the quantitative features of the
response function.

4. Position–velocity correlation function

4.1 Ohmic model

The position–velocity correlation for the Ohmic model
is given by

Cxvx (t) = −iγ �

2πm

×
∫ ∞

−∞
dω

(ω2 + ω2
c + γ 2)coth

(
ω

	th

)
e−iωt

[(ω2 + ω2
c + γ 2)2 − 4ω2ω2

c ]
, (28)

where 	th = 2kBT /� is the thermal frequency. Using
Cauchy’s residue theorem, and choosing the lower con-
tour consistent with causality, one can solve the above
integral. The poles lying in the lower contour are ω =
±ωc − iγ and ω = −inπ	th, where n = 1, 2, ...∞.
Here the additional poles at ω = −inπ	th pertain to the
coth term. Summing over the residues, the integration
yields the result

Cxvx (t) = −�e−π t	th

4πm

[



(
e−π t	th , 1, 1 + −iωc + γ

π	th

)

+ 


(
e−π t	th , 1, 1 + iωc + γ

π	th

)

− 


(
e−π t	th , 1, 1 + −iωc − γ

π	th

)

− 


(
e−π t	th , 1, 1 + iωc − γ

π	th

)]
− i�

4m
e−γ t

×
[
− coth

(
ωc + iγ

	th

)
eiωct+ coth

(
ωc − iγ

	th

)
e−iωct

]
,

(29)

where 
 is the Hurwitz–Lerch transcendent function,
defined as
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(z, s, α) =
∞∑
j=0

z j

( j + α)s
. (30)

In contrast to the response function, the position–
velocity correlation function has a temperature depen-
dence due to the presence of the thermal frequency 	th.
In particular, we can consider the asymptotic limit of the
high-temperature classical domain.

In the high-temperature classical domain dominated
by thermal fluctuations, (	th/ω) 	 1. In this limit,




(
e−π t	th , 1,

±iωc ± γ + π

π	th

)
→ 
 (0, 1, α) → 0

(31)

coth

(
ωc ± iγ

	th

)
→ 	th

ωc ± iγ
. (32)

Hence, the position–velocity correlation turns out to be

Cxvx (t) = −kBT

m
e−γ t

[
ωc sin(ωct) − γ cos(ωct)

ω2
c + γ 2

]
.

(33)

Setting the limits t = 0 and ωc = 0, we get the following
expected result: Cxvx (0) = kBT /mγ .

4.2 Drude model

As in the case of the Ohmic model, in this case also
one can write the expression for the position–velocity
correlation function using eqs (16) and (27).

Cxvx (t) = −i h̄

2πm

∫ ∞

−∞
dω

(
γ

1 + ω2τ 2

)
coth

(
ω

	th

)
e−iωt

×

[(
ω + ωγ τ

1+ω2τ 2

)2 + ω2
c +

(
γ

1+ω2τ 2

)2
]

{[(
ω + ωγ τ

1+ω2τ 2

)2 + ω2
c +

(
γ

1+ω2τ 2

)2
]2

− 4ω2
c

(
ω + ωγ τ

1+ω2τ 2

)2
}

.

. (34)

In this case too, like the response function, we solve
the integral numerically for both the high-temperature
classical and low-temperature quantum regimes. Fig-
ures 2 and 3 show the time evolution of the position–
velocity correlation function in the high-temperature
domain and low-temperature domain, respectively. For
both cases we have discussed the different regimes
(underdamped, overdamped and critically damped)

following the same parameters and notations used in
figure 1.

5. Velocity autocorrelation function

5.1 Ohmic model

For the Ohmic model, the velocity autocorrelation func-
tion is given by

Cvx (t) = γ �

2πm

×
∫ ∞

−∞

ω(ω2 + ω2
c + γ 2) coth( ω

	th
)[

(ω2 + ω2
c + γ 2)2 − 4ω2ω2

c

]e−iωtdω. (35)

The poles for the above expression are located at ω =
−inπ	th and ω = (ωc+iγ ), (−ωc+iγ ), (ωc−iγ ) and
(−ωc− iγ ). Of these, only the poles at −inπ	th, (ωc−
iγ ) and (−ωc − iγ ) lie within the lower contour. Thus,
the above integration can be calculated using Cauchy’s
residue theorem and we get

Cvx (t)=
−i�

4πm
e−π t	th

×
{
(ωc+iγ )

[



(
e−π t	th , 1, 1+−iωc + γ

π	th

)

+ 


(
e−π t	th , 1, 1 + iωc − γ

π	th

)]

− (ωc − iγ )

[



(
e−π t	th , 1, 1 + iωc + γ

π	th

)

+ 


(
e−π t	th , 1, 1 + −iωc − γ

π	th

)]}

+ �

4m
e−γ t

[
(ωc + iγ ) coth

(
ωc + iγ

	th

)
eiωct

+ (ωc − iγ ) coth

(
ωc − iγ

	th

)
e−iωct

]
. (36)

In the high-temperature limit ((	th/ω) 	 1), the
velocity autocorrelation turns out to be

Cvx (t) = kBT

m
e−γ t cos(ωct). (37)
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Figure 2. Time evolution of the position–velocity correla-
tion function in the high-temperature domain, for 	th = 104.
(Top) The underdamped (ωc = 10, γ = 1), (middle) the
overdamped (ωc = 1, γ = 100) and (bottom) the critically
damped (ωc = 1, γ = 1) cases. In all the cases, the solid
blue line is for the Ohmic case using eq. (29), the double
dot-dash red line is for the Drude case τ = 0, the dashed
black line is for τ = 0.5 and the dot-dash green line is for
τ = 1.

At t = 0, Cvx (0) = kBT /m, which is expected in the
thermal fluctuation-dominated classical regime and is
consistent with the Equipartition theorem.
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Figure 3. Time evolution of the position–velocity correla-
tion function in the low-temperature domain for 	th = 0.1.
(Top) The underdamped (ωc = 10, γ = 1), (middle) the
overdamped (ωc = 1, γ = 100) and (bottom) the critically
damped (ωc = 1, γ = 1) cases. In all the cases, solid blue
line is for the Ohmic case using eq. (29), the double dot-dash
red line is for the Drude case τ = 0, the dashed black line is
for τ = 0.5 and the dot-dash green line is for τ = 1.

5.2 Drude model

Using eqs (18) and (27), the velocity autocorrelation in
this case is given by

Cvx (t) = h̄

2πm

∫ ∞

−∞
dω

(
γω

1 + ω2τ 2

)
[(

ω + ωγ τ

1+ω2τ 2

)2+ω2
c +

(
γ

1+ω2τ 2

)2
]

coth
(

ω
	th

)
e−iωt

{[(
ω+ ωγ τ

1+ω2τ 2

)2+ω2
c +

(
γ

1+ω2τ 2

)2
]2

− 4ω2
c

(
ω+ ωγ τ

1+ω2τ 2

)2
} . (38)
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Figure 4. Time evolution of the velocity autocorrelation
function in the high-temperature domain for 	th = 104.
(Top) The underdamped (ωc = 10, γ = 1), (middle) the
overdamped (ωc = 1, γ = 100) and (bottom) the critically
damped (ωc = 1, γ = 1) cases. In all the cases, solid blue
line is for the Ohmic case using eq. (36), the double dot-dash
red line is for the Drude case τ = 0, the dashed black line is
for τ = 0.5 and the dot-dash green line is for τ = 1.

We analyse this integral numerically like the other phys-
ical observables discussed in earlier sections, for the
Drude model, for both the high-temperature
((	th/ω) 	 1) and low-temperature ((	th/ω) 
 1)
regimes.

Figures 4 and 5 show the time evolution of the veloc-
ity autocorrelation function in the high-temperature
domain and low-temperature domain respectively. For
both cases, we have discussed the different regimes
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Figure 5. Time evolution of the velocity autocorrelation
function in the low-temperature domain for 	th = 0.1. (Top)
The underdamped (ωc = 10, γ = 1), (middle) the over-
damped (ωc = 1, γ = 100) and (bottom) the critically
damped (ωc = 1, γ = 1). In all the cases, the solid blue
line is for the Ohmic case using eq. (36), double dot-dash red
line is for the Drude case τ = 0, the dashed black line is for
τ = 0.5 and the dot-dash green line is for τ = 1.

(underdamped, overdamped and critically damped) fol-
lowing the same parameters and notations used in figures
2 and 3.

6. Results: Comparison of Ohmic and Drude
models

In this section we discuss the results displayed in figures
1–5.
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In figure 1 we study the behaviour of the response
function for the Ohmic and the Drude models for var-
ious values of τ , the memory time (the Drude time) in
the underdamped (ωc 	 γ ), overdamped (ωc 
 γ )
and critically damped (ωc = γ ) regimes. We have
explicit analytical forms for the Ohmic model (eqs (24),
(29) and (36)) which enables an easy comparison with
the results obtained in the Ohmic limit (τ = 0) for
the Drude model. We notice that as τ goes up, the
oscillations in the underdamped regime get to be more
sustained. In the overdamped regime, for the Ohmic
case, there is an initial steep rise in the response func-
tion before it settles down to the constant value of 1/mγ

(see eq. (25)). This behaviour of the response func-
tion R(t) of an initial increase followed by saturation
to a fixed value determined by the viscous damping
rate can be understood as follows: When we perturb
a Brownian particle, it initially has a directional dis-
placement before it gets completely randomised by a
rate determined by the viscous damping rate. The over-
all trend is the same for the Drude model too. However,
we notice that the Drude time-scale τ leads to a more
sustained oscillation in the underdamped regime and
leads to an effective slowing down of the damping in
the overdamped regime. This can be understood as fol-
lows. The presence of memory, characterised by τ in
the Drude model leads to a slowing down of the rise of
the response function (as revealed in figure 1), which
in turn means that randomising of the motion of the
Brownian particle is slowed down leading to a weaker
effect of dissipation on the particle. Since the damped
harmonic oscillation is a consequence of a competition
between the oscillatory effect of the cyclotron frequency
and the damping effect of viscosity, it is clear that the
presence of a finite τ results in more sustained oscil-
lations than in the Ohmic case where τ = 0. In the
critically damped case, the behaviour of the response
function is between the two extremes of underdamped
and overdamped regimes.

Let us now discuss the position–velocity correlation
function. We display a family of curves for various val-
ues of τ for the position–velocity correlation function
in the high temperature regime for the overdamped,
underdamped and critically damped cases in figure 2.
We notice a transition from an oscillatory behaviour to
an overdamped monotonic behaviour stemming from a
competition between the oscillatory time-scale set by the
cyclotron frequency ωc and the damping rate γ . Such
a transition from an oscillatory to a damped monotonic
behaviour has been noticed in some earlier works in
the context of damping of Bloch oscillations in opti-
cal lattices [3]. However, in ref. [3] the origin of these
damped harmonic oscillations is quite distinct from the
context dealt in this paper. Kolovsky et al [3] studied

Bloch oscillations of cold neutral atoms in an optical
lattice. Spontaneous emission causes the decay of Bloch
oscillations, the decay rate being set by the rate of spon-
taneous emission. Furthermore, from our results, we
notice that similar to the case of response function, in
the under-damped regime, the increase in the memory
time-scale leads to more sustained oscillations. In addi-
tion, in the overdamped and critically damped regime,
the damping is slower for larger memory scales as seen
in figure 2.

As in the high-temperature domain, we find that
even in the low-temperature domain the position–
velocity correlation function exhibits oscillations in
the underdamped regime (figure 3). What is some-
what surprising is the presence of a non-monotonic
trend in the position–velocity function in the over-
damped regime at low temperatures. This is true for
both the Drude case and the Ohmic case (τ = 0)
limit. This can be explained by the fact that noise cor-
relations are inherently non-trivial (non-Markovian) in
the low-temperature quantum domain. This is, perhaps,
the origin of sustained memory-induced non-monotonic
trends in the curves in the low-temperature overdamped
regime. The position–velocity correlation goes towards
negative values in the beginning and then turns around
and finally tends to zero at large times. The time at
which this turnaround takes place is dependent on the
memory time τ and shifts towards larger values of
time as τ increases. It is interesting to note that there
has been a similar observation of sustained oscilla-
tions in the context of a classical Langevin equation
(valid in the high-temperature domain) of a charged
particle in a magnetic field for a Drude model in the
presence of exponentially correlated noise [6]. Non-
trivial noise correlation is a common feature in these
two disparate cases (a classical Langevin dynamics
of a charged particle in a magnetic field with corre-
lated noise [6] and a quantum Langevin dynamics of
a charged particle in a magnetic field with non-trivial
quantum correlated noise, dealt with in this paper).
Notice that in our analysis in the high-temperature
limit of (	th/ω) 	 1, such non-trivial noise correla-
tions are absent, simply because one has a memory-free
delta-correlated noise in that limit and thus we obtain
a monotonic behaviour starting from a large posi-
tive value of the position–velocity correlation function
which gets damped and goes over to zero in the long
time limit.

The trends followed by the velocity autocorrelation
function in various time–temperature regimes (figures
4 and 5) are similar to that of the position–velocity
autocorrelation function. However, the non-monotonic
feature discussed in the low-temperature, overdamped
regime is less pronounced in the case of the velocity
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autocorrelation function than in the case of the position–
velocity correlation function.

7. Experimental implications

In recent experiments, correlation functions have been
studied using a variety of methods. Many of these
experiments measure the properties of the anomalous
diffusion of cold atoms in optical lattices [18–20].
The experimental technique involved in ref. [21] uses
optical tweezers for trapping the particles and the posi-
tion correlations of the particles are measured using a
high-bandwidth photodetector. In ref. [22], the position–
velocity correlation function has been studied for ultra-
cold Rb atomic cloud undergoing anomalous diffusion.
The position–velocity correlation is then measured
using a tomographic method which is a combination
of absorption imaging and Raman velocity selection. In
a recent paper [23], the measurement of the response
function of ultracold Rb atomic cloud in a magneto-
optical trap (MOT) and the spatial diffusion of the cloud
in the absence of the MOT have been presented and
analysed. As we know from the linear response the-
ory, the response function is a measure of how a system
responds to an external drive. In [23], a pulsed homo-
geneous magnetic field is used as an external driving
force for measuring the response function. The atomic
cloud gets displaced due to the external drive. Then it
is allowed to equilibrate for some time and then finally
returns to its original position when the external drive
is turned off. The position of the cold atomic cloud is
recorded at regular intervals after turning off the exter-
nal drive and thus the path of the cloud is traced. In the
same experiment, spatial diffusion of the atomic cloud
is measured in the viscous medium provided by opti-
cal molasses. In this case, the MOT is turned off and
the atomic cloud is allowed to diffuse in the presence
of optical molasses and the mean square displacement
(the position correlation function) is measured using
an absorption imaging technique. As discussed in §2,
a knowledge of the position autocorrelation enables us
to compute the position–velocity and velocity autocor-
relation functions. These predictions can be tested using
the techniques in ref. [23] with hybrid traps for ions and
neutral atoms, and additionally a uniform magnetic field
can be provided using a combination of Helmholtz con-
figuration magnetic coils.

8. Concluding remarks

In this paper, we studied the interplay between the
cyclotron frequency and the viscous damping rate via

the quantum Langevin equation for a charged parti-
cle coupled to a bath in the presence of a magnetic
field. In particular, we studied the response function, the
position–velocity correlation function and the velocity
autocorrelation for two bath models – the Ohmic bath
and the Drude bath models and made a detailed compar-
ison in various time–temperature regimes. It is pertinent
to mention here that, to our knowledge, such a detailed
investigation has not been done earlier. To be more spe-
cific, our results of position–velocity correlation are of
extreme importance, as it has been rarely studied ana-
lytically in literature, in spite of having experimental
importance [22].

In the zero-point fluctuation-dominated low-
temperature regime, non-trivial noise correlations lead
to some interesting features in the transition from an
oscillatory to a monotonic behaviour. We also studied
the role of the memory time-scale which comes into
play in the Drude model and investigated the effect of
this additional time-scale. We thus saw a rich interplay
of various time-scales set by the cyclotron frequency ωc,
the damping rate γ , the Drude time-scale τ and the ther-
mal time-scale βh̄ which controls the noise correlations
in the quantum domain. Our study is unique in address-
ing the richness of all these time-scales, sweeping across
the thermal fluctuation-dominated classical regime and
the quantum fluctuation-dominated quantum regime.
We are not aware of such a comprehensive study of
the response function, the position–velocity correlation
function and the velocity autocorrelation function for a
charged particle in a magnetic field in a viscous medium.

In refs [24–28], a power law decay (t−α) of the
velocity autocorrelation function has been observed at
long times, with α = 3/2 in the classical regime and
α = 2 for position correlation in the quantum regime.
In our study too we noticed a slow long-time decaying
behaviour (figures 4 and 5) of the correlation functions
at overdamped and critically damped regimes, both in
the classical and quantum domains. The precise nature
of the long time tails lies outside the scope of the present
study and can be analysed in detail in the future.

In this paper, we considered a QLE of a charged quan-
tum Brownian particle in the presence of a magnetic field
and linearly coupled via position coordinate to a bath. In
contrast, in ref. [29], Gupta and Bandyopadhyay derived
a QLE for a charged quantum particle in a harmonic
potential in the presence of a uniform external magnetic
field and coupled linearly through the momentum vari-
ables to a bath of oscillators. In that context, they noticed
that the magnetic field appears through a quantum gener-
alised classical Lorentz force term. In addition, the QLE
involves a random force independent of the magnetic
field. While these aspects are also there in the present
analysis of the QLE for a charged quantum Brownian
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particle coupled to the bath via position coordinate [9],
there are significant differences: (i) The random force
has a modified form with symmetric correlation and
unequal time commutator different from those in the
case of coordinate–coordinate coupling, (ii) the inertial
term and the harmonic potential term in the QLE get
renormalised as a consequence of the renormalisation
of the mass and (iii) the memory function characterising
the mean force in the QLE not only has a magnetic field-
independent diagonal part, but also an explicit magnetic
field-dependent off-diagonal part [29]. We therefore
expect the behaviour of the various correlation func-
tions analysed and depicted here to get qualitatively and
quantitatively modified in the context of a momentum
coupling between the charged particle and the bath.

We expect our work to generate interest among exper-
imentalists to test the predictions that stem out of our
theoretical study.
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