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Abstract. We report the results of studies of improved tests for non-linearity based on time series-induced network
statistics and surrogate data. We compare results from the network-based statistics with the earlier tests available in
the literature and demonstrate the superiority of these tests over the previous tests for several systems. The method
we propose is based on constructing a network from a time series and using easily computable parameters of the
resulting network such as the average path length, graph density and clustering coefficient as test statistics for the
surrogate data test. These statistics are tested for their ability to distinguish between nonlinear processes and linear
noise processes, using surrogate data tests on time series obtained from the Rössler system, the Lorenz system,
the Henon map, the logistic map and an actual experimental time series of wind speed data, and compared with
popularly used time series associated statistics. The network-based statistics are found to distinguish between the
nonlinear time series and surrogates derived from the data to a higher degree than the commonly used time series-
based statistics, even in the presence of measurement noise and dynamical noise. These statistics may thus prove to
be of value in distinguishing between time series derived from nonlinear processes and time series obtained from
linearly correlated stochastic processes even in the presence of measurement noise and dynamical noise. The results
also show that the efficiency of the network parameters is not exacerbated by the presence of outliers in the given
time series.
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1. Introduction

An essential step in analysing time series data, which
contain persistent apparent random fluctuations, is to
judge whether the source of apparent randomness in
the data is purely stochastic or deterministic chaos or
a mixture of deterministic and stochastic effects. While
the output of a noise process could well be a random
time series, it is equally possible for a low-dimensional
deterministic system also to generate a time series
that appears random [1]. Deterministic low-dimensional
chaotic systems have many characteristic features such
as attractors with small fractional dimension, positive
Lyapunov exponents and broad power spectrum, and

there exist various tools to quantitatively estimate these
discriminating measures from a single time series origi-
nating from such a system using the idea of phase-space
reconstruction [2–4]. However, it has been demonstrated
that many of these features could also be shown by lin-
ear stochastic systems [5,6] and as such it is difficult
to distinguish a deterministic chaotic time series from a
purely random series based solely on numerical values
of these discriminating measures unless there is a priori
knowledge about the underlying system. Thus, before
values of these measures can be accepted as evidence
for chaos, it is essential to establish the nonlinearity of
the data to preclude the possibility that the data come
from a linear noise process.
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The surrogate data test is widely held to be a reli-
able technique for discriminating a nonlinear process
from a noise process [7,8]. This is basically a statistical
procedure for testing the null hypothesis that the given
time series is a linear Gaussian process, possibly dis-
torted by a nonlinear measurement function. One then
generates an ensemble of random data sets (surrogates)
that are consistent with the null hypothesis but preserve
the linear properties of the original data. Thus, the sur-
rogates are like independent realisations of the process,
which generates the original data if that process satisfies
the null hypothesis. Deviation from the null hypothesis
is estimated by comparing the value of some discrimi-
nating statistic on the data with the distribution of the
corresponding values from the surrogates. If there is a
significant difference in the values, the hypothesis is
rejected, and the original data are considered nonlinear
at the specified level of significance. The statistical inter-
pretation of the surrogate test depends on the choices
of the null hypothesis, the test statistic used and the
method of generating surrogates. Various attempts have
been made to improve the efficiency of the surrogate
data test by using better test statistics and improving the
methodology [9–11]. Chavez and Cazelles [12] have
recently proposed a method combining wavelet trans-
forms and non-stationary surrogates to detect short-lived
spatial coherent patterns from multivariate time series.
While surrogate data tests are generally used to distin-
guish nonlinear deterministic systems from the linear
stochastic system, Hirata and Shiro [13] recently pro-
posed a method for testing the nonlinear stochasticity
of a given system.

The purpose of this paper is as follows. First, we
present some new test statistics for a surrogate data test,
which are based on the idea of constructing a complex
network from the time series. Second, the new test statis-
tics are compared with a couple of other statistics in
terms of their efficiency and robustness when the orig-
inal data are possibly distorted by some measurement
noise or are affected by the dynamical noise. Further,
there is always room for improvement in the detection
of nonlinearity in a time series, especially when it is
corrupted by measurement noise or dynamical noise.
Keeping this in mind, we report results of network-based
statistics used on surrogate data as an improved test for
nonlinearity in the presence of measurement noise and
dynamical noise. The concept of generating a complex
network from a time series was first introduced by Zhang
and Small [14], and since then, many different methods
for constructing networks have been proposed [15–18]
and used to derive qualitative information about the orig-
inal time series. Various applications of this approach
have also been reported in [19–27]. We demonstrate that
statistics derived from the network constructed from the

time series can be used in surrogate tests to yield bet-
ter results in distinguishing linear noise processes from
nonlinear processes that are possibly corrupted by mea-
surement noise or affected by a systematic source of
dynamical noise. The new test statistics are compared
with time invariance and time-reversal statistics on sev-
eral different sets of time series data at different noise
levels. Time series generated by the Lorenz equations,
the Rössler system, the Henon map and the logistic map,
as well as a field data of wind speed – all of which are
known to be deterministic systems exhibiting chaotic
behaviour – are used in the simulations at various lev-
els of noise. In all the cases, the network parameters
yield larger values for the significance of variation at all
levels of noise, making it possible to judge the nature
of the data accurately. While there are many studies on
the effect of measurement noise in surrogate data tests,
the effect of dynamical noise has not been addressed
sufficiently, except in a few cases [28].

2. The method of surrogates

The Fourier transform method [7,29] of creating sur-
rogates for the null hypothesis that the time series is a
linear Gaussian process, is rather straightforward. Given
the time series xt , t = 1, 2, . . . , N , we first take the dis-
crete Fourier transform

zn =
N∑

t=1

e2π int/N xt . (1)

Keeping the absolute values of zn fixed, the phases are
now randomised, by choosing K values φk uniformly
distributed between 0 and 2π, and constructing a set of
Fourier transformed data

zkn = |zn|eiφk , k = 1, 2, . . . , K . (2)

Inverting the Fourier transform now gives the K surro-
gates

yt = (1/N )

N∑

n=1

e−2π int/N zkn. (3)

Constructed this way, the surrogates have the same
power spectrum (or equivalently the same autocorre-
lation function) as the original data. Linear Gaussian
processes are essentially determined by their mean and
autocorrelation functions and their realisations should
differ only in their Fourier phases. Hence, the surrogates
can be considered as independent realisations of the
original data, if it were consistent with the null hypoth-
esis.
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A slight modification of this procedure is used to gen-
erate surrogates for the extended null hypothesis that
the observed time series is a static non-linear mono-
tonic function of a linear Gaussian process [7,29]. In
this case, the given time series is first rescaled so that its
values are Gaussian, and then surrogates are constructed
as before and finally, the surrogates are rescaled to match
the original series.

Deviations from the null hypothesis are now estimated
by comparing the value of some discriminating statistic
of the given data with the distribution of values obtained
from the surrogates. The null hypothesis is accepted or
rejected based on the value of the significance of differ-
ence given by [30]

S = μorig − μ

σ
, (4)

where μ and σ are the mean and standard deviations
of the distribution of the statistic as computed from the
surrogates and μorig is the mean of the statistic of the
original data. The null hypothesis is rejected at 95%
confidence level if S > 2.

There are many discriminating statistics that are com-
monly used to test nonlinearity using surrogate data.
Maiwald et al [31] presented a comparison of about a
dozen of these statistics under different combinations of
null hypotheses and surrogate types, and demonstrated
that the time-invariance statistic introduced by them
leads to better results in all the cases considered. For
a set of data xn , time invariance is given by

TIV = max

{
#{|xi+1| > |xi |}
#{|xi+1| < |xi |} ,

#{|xi+1| < |xi |}
#{|xi+1| > |xi |}

}
. (5)

Another powerful statistic is the time-reversal asym-
metry, which measures deviations from time reversibil-
ity which characterises linear systems, given by [29]

TR =
∑

(xi − xi−τ )
3

∑
(xi − xi−τ )2 . (6)

In the next section, we introduce some new test statis-
tics based on a network representation of time series and
compare their performance with TIV and TR in identi-
fying non-linearity in time series data.

3. Network from time series

Complex networks are generally used to study (usually
spatially extended) complex systems by representing the
basic elements or subsystems within the complex system
by nodes and the relations or interactions among them by
edges connecting the nodes. The network representation
allows one to analyse the relations among the system ele-
ments on local or global scales by using several network

parameters and statistical descriptors developed from
classical graph theory. The method has been largely
successful in understanding the critical structural and
dynamical properties of complex systems.

In recent years several researchers have attempted
to study the dynamics of time series by transforming
them into complex networks using different techniques
to construct nodes and define edges. Zhang and Small
[14] studied a pseudoperiodic time series by represent-
ing each cycle as a node and connecting them by an edge
if the phase-space distance or correlation coefficient
between them is less than a threshold value. Yang and
Yang [15] and Gao and Jin [16] extended this method by
using individual state vectors in the phase-space embed-
ding of the time series as nodes and the correlation
coefficient as the threshold parameter for defining edges.
Lacasa et al [17] used individual observations of the time
series data as nodes and a visibility condition among the
nodes to construct connections. Other methods include
using phase-space vectors and their neighbourhood rela-
tions for defining networks [32] or the recurrence matrix
of time series for defining adjacency in networks [18]

In this work, we propose to use the parameters related
to the structural properties of the complex network
constructed from a time series as test statistics for a sur-
rogate data test. To construct the network, the individual
state vectors in the reconstructed phase space are used as
nodes and the Euclidean distance between them selected
as the criterion for defining edges. More specifically,
given the time series x1, x2, x3, . . . , xn , we construct
the m-dimensional state vectors Xt with time delay τ as

Xt = (xt , x(t+τ), x(t+2τ), . . . , x(t+(m−1)τ )),

t = 1, 2, 3, . . . . (7)

Taken’s embedding theorem and its extensions [3,4,33]
assert that the dynamics of Xt in the m-dimensional
space will be topologically identical to the dynamics
of the original system which generates the time series
xi , under very general conditions. There is no restric-
tion, in principle, on the value of τ , but a sufficient (but
not necessary) condition on the embedding dimension
is m ≥ 2d + 1, where d is the fractal dimension of the
underlying attractor [4]. However, in practice, embed-
ding dimensions less than 2d + 1 work in many cases.

To construct the network, we assume the state vectors
Xt , t = 1, 2, . . . as the nodes. Connections between
nodes are established based on the Euclidean distance
di j between nodes Xi = (xi1, xi2, . . . , xim) and X j =
(x j1, x j2, . . . , x jm) given by

di j

=
√

|xi1 − x j1|2 + |xi2 − x j2|2 + · · · + |xim − x jm |2.
(8)
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Nodes Xi and X j are connected if di j < ε for a fixed
value of the critical length εc. Gao and Jin [34] proposed
a method to fix the critical value of ε by computing the
normalised maximum size of subgraph distribution for
varying length. In this paper, we computed the number
of edges (NNE), normalised to the number of edges of
the complete graph with the same number of nodes, by
varying the cut-off length to form an edge. The critical
value of ε corresponds to the maximum rate of increase
of NNE with respect to the varying cut-off length.

Several structural properties are associated with the
network thus constructed, which can serve as a test
statistic for the surrogate test. In this paper, we propose
to use three such metrics, which are easily computable
from the network, namely the graph density (GD), the
average path length (APL) and clustering coefficient
(CC). The graph density of a network is the ratio of
the number of edges to the maximum number of edges
and is given by

GD = 2E

N (N − 1)
, (9)

where E is the number of edges and N is the number
of nodes in the network. The average path length is the
average of the shortest path length, averaged over all
pairs of nodes, and is computed as

APL = 1

N (N − 1)

∑

i �= j

di j , (10)

wheredi j is the length of the shortest path between nodes
i and j , which is taken as zero if i and j are disconnected.
The (global) clustering coefficient is defined by

CC = 3 × Number of triangles

Number of triplets
, (11)

where a set of three nodes {i, j, k} is called a triangle
if every two of them are connected by an edge and a
triplet if i is connected to j and j is connected to k.
The clustering coefficient is a measure of the degree to
which nodes tend to cluster together within a graph.

4. Results and discussion

We compare the performance of the parameters calcu-
lated from the complex network resulting from a time
series for a surrogate data test against the null hypoth-
esis that a linear Gaussian process generates the time
series. We are mainly concerned with testing the robust-
ness of the statistic for correctly identifying nonlinearity
in the data even when it may be corrupted by the noise
that enters through the measurement process or through
a systematic dynamical source. This aspect is signifi-
cant when testing determinism in experimental data as

such data are usually affected by the measurement noise
while the actual dynamics might be deterministic and
nonlinear. Besides, noise may also be generated in the
system by neglecting higher-dimensional processes of
low amplitude, which is common in realising a nonlinear
process. Even numerical solutions of a nonlinear system
have these contributions from roundoff error.

4.1 Comparison of network and time series-based
parameters

We consider five different sets of chaotic time series for
the analysis, including those generated by continuous
dynamical systems (Rossler system and Lorenz system),
discrete systems (logistic and Henon maps) and also a
field data of observed wind speed measured at regular
intervals. We tested the procedure first on the Rössler
system. The Rössler system is governed by [35]

ẋ = −y − z

ẏ = x + ay

ż = b + (x − c)z (12)

which is chaotic for a = 0.1, b = 0.1 and c = 18.
To carry out the analysis on the Rössler system, we

integrated eqs (12) numerically and sampled the out-
put of integration at an interval of δt = 0.4 time units
to obtain the temporal sequence of the solution. The
sequence of the first component of the solution xi of
length 2500 has been considered as a typical time series
generated by the purely nonlinear deterministic dynam-
ics of the Rössler system. By adding white noise to this
series we obtain the noisy deterministic series

yn = xn + nl N (0.1), (13)

where N (0, 1) denotes an uncorrelated Gaussian noise
process with zero mean and unit variance and nl is a
parameter to control the noise level. Thus, yn represents
a chaotic time series evolving under nonlinear deter-
ministic laws but distorted by the measurement noise.
The surrogate test is carried out on yn at different levels
of noise determined by the value of the parameter nl,
at each level constructing several surrogates, using the
amplitude-adjusted Fourier transform method [7,36],
consistent with the null hypothesis that the given series
is from a linear Gaussian process, possibly affected by
a nonlinear measurement function. Thus, for a fixed
value of nl, 40 surrogates are generated from yn , and
the null hypothesis was tested using as test statistics
time invariance (TIV), time reversal asymmetry (TR),
also the graph density (GD), average path length (APL)
and clustering coefficient (CC) of the networks induced
by the time series and the surrogates. In order to fix the
critical value of the cut-off length ε for forming an edge,
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we constructed networks for increasing values of ε and
computed the number of edges normalised to maximum
possible edges (NNE), which is that of the complete
graph with the same number of nodes. The value of ε cor-
responding to the maximum rate of increase is taken to
be the critical value to construct the network. However,
for the surrogate data test, a smaller value is also found to
perform equally well. For a time series of noise level nl,
the network structural properties and time series-based
statistics were computed for both the original data and
the distribution of surrogates, and the value of the signifi-
cance of difference S, given by eq. (4), is calculated. The
whole procedure is then repeated for increasing values of
noise level (nl) to assess the robustness of the network-
based test statistics and their sensitivity to measurement
noise.

The values of NNE for increasing values of ε are plot-
ted in figure 1. The maximum rate of increase of NNE
occurs at ε = 20.6, which was used to construct the
networks. The average values of S with standard error,
obtained by repeating ten sets of noise values, for a set
of different values of nl are plotted in figure 2. We can
make two observations from this figure. First, in the
absence of noise (nl = 0), values of S for network-
based parameters are greater than the values of S for
the time series parameters TIV and TR, indicating that
network-based test statistics are more capable of dis-
tinguishing nonlinearity and determinism present in a
given time series compared to the best traditional time
series-based parameters. Secondly, values of S for the
time series parameters decrease rapidly with increasing
values of the noise level nl. In contrast, the values of
S computed from network-based parameters maintain
their superiority with values above 2 for a significantly
wider range of noise levels nl. These observations show
the robustness and stability of the network-based test
statistics in the presence of noise in identifying nonlin-
earity when it is dominant and noise is relatively weak.
The results are more pronounced in the case of network-
based test statistics suggesting the rejection of the null
hypothesis for relatively higher levels of measurement
noise with larger values for the significance of difference
compared to the time series-based statistics. This obser-
vation shows that the structural properties of induced
networks can identify inherent nonlinearity more faith-
fully, notwithstanding the presence of relatively higher
levels of spurious noise in the data.

The structural properties of the network constructed
may vary with the choice of the critical length εc and
to evaluate how this might affect the values of S, we
computed S for a range of values of ε less than 20.6 and
found similar performance. The values of S are greater
than 2 for a wide range of values of εc ≤ 20.6, showing
that computations of S for the network parameters are

Figure 1. Rössler system: Plot of the normalised number of
edges (NNE) vs. threshold value (ε) and its slope. The criti-
cal value εc = 20.6 corresponding to the maximum slope is
selected to construct the network.

Figure 2. Rössler system: Plot of the significance of differ-
ence S based on network and time series base test statistics
vs. noise level nl.

robust with respect to minor variations in the value of
the critical length ε, and would not affect the test results
based on the values of S.

Next, we repeated similar computations for the
Lorenz system. The Lorenz system is a nonlinear deter-
ministic system with governing equations [1]

ẋ = σ(y − x)

ẏ = −y + x(r − z)

ż = xy − bz. (14)

The parameters are set at values σ = 10, b = 8/3 and
r = 40 for which the system is chaotic. We considered
the first component of the solution vectors as the chaotic
time series for our analysis. Plots of the values of S for
different noise level values and the different test statis-
tics for the Lorenz system are given in figure 3. This
plot provides further evidence for the superiority of the
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Figure 3. Lorenz system: Plot of S vs. noise level nl for
different test statistics, with ε = 10.0, m = 7, τ = 1 and
time series length 1024.

Figure 4. Logistic map: Plot of S vs. noise level nl for differ-
ent statistics, for the parameter values ε = 0.9, m = 3, τ = 1
and time series length 512.

test statistics based on the structure of the induced net-
works in distinguishing nonlinear processes from linear
Gaussian processes.

We also carried out a similar analysis for the time
series generated from two discrete systems, viz., the
logistic and Henon maps. The logistic map, given by

xn+1 = μxn(1 − xn) (15)

generates a time series xn which is chaotic for most
values of μ > 3.57. The two-dimensional Henon map
defined by [37]

xn+1 = 1 − ax2
n + yn

yn+1 = bxn (16)

is chaotic for the values a = 1.4 and b = 0.3. It gener-
ates the sequence (xn, yn) and the first coordinate values
xn constitute the time series for our analysis.

Figure 4 summarises the results for the surrogates of
the noisy logistic time series at various noise levels for

Figure 5. Henon map: Plot of S vs. noise levelnl for different
test statistics, with ε = 0.9, m = 5, τ = 1 and time series
length 1024.

different test statistics. Figure 5 is for the Henon map
time series. As in the case of continuous systems, we see
that the test statistics APL, CC and GD are more reliable
and powerful in identifying the underlying nonlinearity
even in the presence of higher levels of noise.

To understand the effect of using the new statistics on
actual experimental data, we selected a wind speed time
series from a location that was earlier shown to have
deterministic and chaotic underlying dynamics [38–
42]. The data comprise measurements of wind speed
taken at 10-min intervals of 1-week duration from a
location given by latitude: 34.98420◦N and longitude:
−104.03971◦W available from the National Renewable
Energy Laboratory (http://www.nrel.gov), USA. Tradi-
tional methods of generating surrogate data, such as the
amplitude-adjusted Fourier transform, preserve linear
stochastic variations and amplitude distribution of the
given time series. As these methods are devised to gen-
erate stationary surrogates, the existing non-stationarity
of the given time series could be misinterpreted as
dynamic nonlinearity [43,44]. Hence, the time series
was detrended and rescaled to the range [0, 1] before car-
rying out further analysis [39,45]. The results obtained
after treatment with the noise followed by surrogate
analysis as earlier are plotted in figure 6. It is clearly
seen that, as in other systems, the statistics APL, CC and
GD perform much better than TIV and TR in detecting
nonlinearity at all levels of noise considered.

Following essentially the same procedure, we have
also compared the performance of the statistics TIV,
TR, APL, CC and GD in terms of the statistical power,
defined as the probability of rejecting the null hypoth-
esis when it is in fact false. As shown in figure 7, at
95% confidence level, CC, APL and GD maintain power
close to 1 for the widest range of noise levels. In com-
parison, TIV and TR are seen to be equally good at
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Figure 6. Wind speed data: Significance vs. noise level for
different test statistics.

Figure 7. Wind speed data: Power of test vs. noise level for
different test statistics.

lower noise levels but become less powerful as the noise
level becomes six or more. Similar trends of power ver-
sus noise level were obtained for other systems as well.
These results complement the earlier observations and
suggest that the tests become more powerful when APL,
CC or GD is used as a statistic for wider ranges of noise
levels in this case also.

The edges mainly decide the structure of any network.
In this work, the time series segments with delay τ rep-
resent the nodes, and the Euclidean distance determines
the formation of the edge between nodes. Since the noise
process added to the signal has zero mean, the distance
between two segments more or less remains unaffected
by the presence of noise as the effect of noise averages
out. Thus, the addition of moderate levels of noise does
not significantly affect the structure of the induced net-
work, which could explain the better performance of
network metrics as test statistics.

Figure 8. Rössler: Plot of S vs. dynamical noise level nl for
different test statistics, with εc = 1.34, m = 7, τ = 1 and
time series length 2500 sampled at δt = 0.4. The dynamical
noise was at every δt = 0.1.

4.2 Dynamical noise

As a next step, we tested the efficiency of the networks-
based test statistics against the dynamical noise. We first
experimented with the Rössler system. To incorporate
the effect of dynamical noise, we added a noise term
nl × N (0, 1) on the right side of eqs (12) and then inte-
grated the system using a differential equation solver.
In order to avoid the solution blowing up, we used a
reflecting boundary fixed by the attractor of the system
without dynamical noise. The time series of length 2500
data points comprising the first component of the output
of integration, sampled at time steps of 0.4 units, was
used for the analysis. We computed the values of S for
network and time series-based test statistics for increas-
ing noise level nl. The result is plotted in figure 8. It can
be observed that network parameters perform signifi-
cantly better than time series-based parameters as test
statistics. Similar plots for the logistic map and Lorenz
system are given in figures 9–11. While TR performs
well for Rössler system, even in the presence of dynam-
ical noise, it is seen to be less efficient in the case of
Lorenz x-series. This fact has been reported earlier [46,
p. 117] and is attributed to the presence of large outliers
in the time series data. However, the results indicate
that the network-based statistics do not suffer from such
shortcomings and provide another motivation for using
network metrics as test statistics for surrogate data test.

4.3 Effect of sampling interval

The time interval at which the data points of the time
series is sampled out from a system solution can also
have an effect on the significance level S. For a chaotic
solution, data points sampled at large interval may not
capture the determinism because of the exponential
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Figure 9. Logistic map: Plot of S vs. dynamical noise level
nl for different test statistics, with εc = 0.9, m = 3, τ = 1
and time series length 512.

Figure 10. Lorenz system: Plot of S vs. dynamical noise
level nl for different test statistics, with εc = 34.6,
m = 7, τ = 1 and time series length 1024.

Figure 11. Henon map: Plot of S vs. time step or sam-
ple interval for different test statistics, with εc = 0.9,
m = 5, τ = 1 and time series length 512.

divergence. In order to assess this impact, we computed
the values S for the time series of Henon map generated

Figure 12. Henon map: Plot of S vs. the sampling interval
of time series for different test statistics, at noise level nl = 0,
with εc = 0.9, m = 5, τ = 1 and time series length 1024.

with the same parameters as in figure 11 but for dif-
ferent sampling intervals keeping the number of points
at 1024. The values of S are plotted in figure 12. It is
evident from this figure that the network-based statistics
yield superior performance compared to the traditional
measures at all sampling intervals. Other systems con-
sidered in this work also show similar results.

5. Conclusions

This paper has introduced some new test statistics for
conducting surrogate data tests to differentiate a non-
linear time series from a linear stochastic time series
and demonstrated their use in numerically simulated
and actual experimental data. The method is based on
the construction of a network from a time series and
using easily computable parameters of the network as
test statistics for the surrogate test. These parameters,
namely the average path length, the graph density and
the clustering coefficient of the network, are compared
with commonly used statistics such as time invariance
and time reversibility and are tested for their ability to
correctly identify an underlying determinism in data
even in the presence of a possible measurement noise
affecting the data or a systematic source of dynami-
cal noise. Numerical simulations conducted on the time
series generated from the Rössler system, Lorenz sys-
tem, logistic map, Henon map and actual experimental
data of wind speed show that the new statistics are more
reliable and robust in the presence of noise in identify-
ing nonlinearity and determinism in the data. Also, the
network parameters do not seem to underperform in the
presence of outliers in the time series, while some of the
time series-based statistics tend to worsen its efficiency,
as noted in the case of the Lorenz series.
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