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Abstract. The present study analyses the phenomena of entropy generation of magneto third-grade fluid flow
through the microchannel. The significance of Joule heating, viscous heating and internal heat source is also
scrutinised. The non-dimensional forms of the corresponding governing equations of the physical phenomenon
with the associated boundary conditions for third-grade fluid flow and heat transfer has been solved using finite
element method. The impact of various parameters on the flow and heat transfer behaviour, entropy generation and
Bejan number is explained using graphs. The obtained results are examined through the plots. The results showed
that an increase in the fluid parameter reduces the activity of the fluid flow and, as a result, the temperature is
diminished. An enhancement in fluid motion and temperature is obtained by increasing the viscosity index. We
noted that the effect of Hartmann number on the rate of local entropy generation and Bejan number is sinusoidal in
nature.
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1. Introduction

Microchannel flow is important in numerous real-life
areas like microelectronics, microchips in computers,
cooling of electronic devices, micromixers, microtur-
bines, fuel cells, microelectronics, magnetohydrody-
namics (MHD), micropumps etc. In this context, some
important applications of fluid flow in microchannel
are reported in refs [1–17]. Malvandi and Ganji [5]
theoretically investigated the impact of heat transfer
by convection and magnetic field on alumina/water
nanofluid flow in a circular microchannel. Hedayati and
Domairry [6] scrutinised the linear slip effect on mixed
convective nanofluid flow through a vertical microchan-
nel with asymmetric heating. Thermal characteristics of
magnetic field on steady mixed convection flow through
a porous vertical microchannel were analysed by Jha and
Aina [7]. Karimipour et al [9] scrutinised the impact of
forced convection of nanofluid flow across a microchan-
nel. Recently, micropolar nanofluid flow through an
inclined microchannel was numerically investigated by
Shashikumar et al [17] in the presence of convective
boundary conditions. This study may provide useful

information to improve the thermal management of
microelectromechanical systems.

Entropy generation analysis has wide applications in
practical and real-life situations such as solar power
collectors, heat engines, heat pumps, refrigerators etc.
Entropy production additionally portrays the perfor-
mance of thermal machines such as power plants, air
conditioners, heat pumps, refrigerators and heat engines.
The entropy generation minimisation in a thermal sys-
tem was first developed by Bejan [18]. Ibánez and
Cuevas [19] investigated the dissipative process that
arose in a microchannel flow subjected to electromag-
netic interactions. Jana and Das [20] examined the
second law analysis in a flow of electrically conduct-
ing viscous fluid between horizontal plates with Navier
slip effect. Ibánez [21] analysed the effects of magnetic
field, hydrodynamic slip, convective boundary condi-
tion and suction/injection on entropy generation of an
MHD fluid through a microchannel. Rashed [22] numer-
ically studied the entropy generation of heat transfer and
unsteady fluid flow in a porous medium with effect of
magnetic and chemical reaction. Impact of forced con-
vection flow inside a vertical microchannel has been
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studied by Abbaszadeh et al [23]. They included the
effect of slip and temperature jump in the boundary
condition. Khan et al [24] addressed the impact of
entropy production of Powell– Eyring fluid through a
microchannel. Hayat et al [25] considered the carbon
nanotubes to investigate the flow and heat transfer along
with stretched nonlinear sheet. Qayyum et al [26] inves-
tigated the entropy generation aspects of Williamson
fluid flow through two rotating disks. Javed et al [27]
discussed the Jeffrey nanomaterial subjected to variable
thickness surface in the presence of nonlinear radiative
heat flux and convective heating. It is found that tem-
perature is enhanced for increasing values of radiative
heat flux and Eckert number. The same concept has been
interestingly utilised by many researchers [28–31].

Studies associated with non-Newtonian third-grade
fluids transmission with heat transport are an imper-
ative research area due to their huge applications in
engineering and industry. Also, the third-grade liquid
models can be utilised in polymer flows. Third-grade
fluid is a subcategory of non-Newtonian fluid which
captures the non-Newtonian effects such as shear thin-
ning, shear thickening as well as normal stresses, even
in cases of rigid boundary. It also exhibits viscous elas-
tic fluid characteristics. Hayat et al [32] have obtained
the solutions by applying homotopy analysis method
(HAM) to transport a third-grade fluid in a porous chan-
nel with transpiration cooling. Sajid and Hayat [33]
applied HAM to analyse the parallel plate flow of third-
grade fluid for constant viscosity. Effectiveness of slip
conditions was explained by Ellahi et al [34] on nonlin-
ear transport of third-grade fluid. Aiyesimi et al [35]
presented the MHD flow and heat transfer in third-
grade fluid through a permeable inclined plane. Baoku
et al [36] examined the mass and heat transfer of a vis-
coelastic third-grade fluid over an insulated vertical plate
subjected to suction across the boundary layer. Nayak
et al [37] studied the third-grade fluid flow under the
influence of radial magnetic field in wire coating pro-
cess. Ogunsola and Peter [38] deliberated the impacts

of Arrhenius reaction on third-grade flow with radiative
heat. Rashidi et al [39] discussed the MHD flow of a
non-Newtonian third-grade fluid over a linearly stretch-
ing sheet subjected to convective heating. Adesanya et
al [40] analysed the convective heating of inherent irre-
versibility in the flow of third-grade fluid through a
channel.

Motivated by the above studies, we plan to do the
thermal analysis of MHD third-grade fluid flow through
a porous microchannel. In the following sections, the
problem is first modelled and then variational finite ele-
ment method is applied to obtain numerical outcomes.
The physical interpretation of the effects of embed-
ded parameters is presented through graphs. Also, the
entropy generation and Bejan number are calculated
and discussed. The study presented in this paper can
be used to do further studies on thin film flow, energy
conservation, coal-water mixture, polymer solution and
oil recovery applications. The outcomes are also use-
ful in many geological and petrochemical engineering
systems, in which energy is maximised.

2. Governing equations and physical model

Here steady MHD third-grade fluid flow caused by a
parallel plate microchannel has been considered. The
third-grade fluid is injected constantly into microchan-
nel at the lower plate and third-grade fluid is sucked
by the upper plate. The upper plate is placed at y∗ = h
while the lower plate is placed at y∗ = 0, y∗ denoting the
transversal coordinates. In addition, T 1 and T2 denote
the temperature of lower plate/upper plate respectively
(see figure 1). Both the plates are infinitely long and
so velocity fields are fully developed. Hence, physical
quantities depend on the transversal y∗ coordinate only.
Also, magnetic field of uniform strength B0 is applied
normal to the plates. Moreover, convective boundary
condition and viscous dissipation are accounted. Based
on the above assumptions, the flow governing equations

Figure 1. Geometry of the flow problem.
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Figure 2. Effect of Ha on (a) velocity (u (y)), (b) temperature (θ (y)), (c) entropy generation (Ns) and (d) Bejan Number
(Be).

in mathematical form under respective boundary situa-
tion are written as [21,22]
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) = 0 at y∗ = 0, (3)

u∗ = 0, k
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dy∗ + c2
(
T ∗ − T1

) = 0 at y∗ = h, (4)

where μ∗ is the viscosity coefficient, u∗ is the axial
velocity, p is the pressure, σ is the electrical conduc-
tivity, φ is the porosity of porous space, T ∗ is the fluid
temperature, β is the non-Newtonian parameter, T1 is
the ambient temperature, k1 is the permeability, k is the
thermal conductivity, T2 is the hot fluid temperature, qr

is the radiative heat flux and c1, c2 are the convective
heat transfer coefficients.

Radiative flux is calculated via Rosseland assumption
appeared in eq. (2):

qr = −16σ1

3χ
T 3

1
dT ∗

dy∗ , (5)

where χ is the Rosseland mean absorption coefficient
and σ1 is the Stefan–Boltzmann constant.

Using eq. (5) in (2) we get
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,
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Figure 3. Effect of M on (a) velocity (u (y)), (b) temperature (θ (y)), (c) entropy generation (Ns) and (d) Bejan Number
(Be).

are substituted into eqs (1)–(4) and (6) to get
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u = 0, θ ′ − Bi1 (θ − 1) = 0 at y = 0, (10)

u = 0, θ ′ + Bi2 (θ) = 0 at y = 1, (11)

where μ0 is the reference viscosity, u is the arbitrary
reference velocity,

Ha = σ B2
0h

2

μ0

is the Hartmann number,

λ1 = βU 2

μ0h2

is the parameter related to the non-Newtonian behaviour,

λ2 = φh2

k1

is the parameter for the porosity of the media,

P = h2

μ0U

∂p

∂x

is the pressure gradient parameter,

Bi1,2 = hci/k for i = 1,2

is the Biot number for the upper/lower plate,

Rd = 16σ1T 3
1

3kχ

is the radiation parameter and

	 = μ0U 2
2

k(T2−T1)

is the viscous dissipation parameter.
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Figure 4. Effect of λ1 on (a) velocity (u (y)), (b) temperature (θ (y)), (c) entropy generation (Ns) and (d) Bejan Number
(Be).

3. Entropy production

The entropy generation rate (Eg) for the third-grade
fluid in the presence of magnetic field with heat transfer
in a microchannel is given as

Eg = 1

T 2
1

(
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The dimensionless expression for entropy generation is
given as
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In eqs (13) and (14)
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2

h2T 2
1

is the characteristic entropy generation rate,
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is the dissipative irreversibility.
The Bejan number (Be) is defined as

Be = Irreversibility heat transfer

Total entropy generation (Ns)
.

Numerically we have

Be = Nh

Nh + Nv

= Nh

Ns
. (15)
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Figure 5. Effect of Bi on (a) temperature (θ (y)), (b) entropy generation (Ns) and (c) Bejan Number (Be).

4. Reynold’s Model

In this paper, Reynold’s model is used to account for the
variation of viscosity with temperature. The viscosity
(μ) for Reynold’s model is expressed as

μ = e−Mθ . (16)

By using Taylor series expansion, we get

μ = 1 − Mθ,
dμ

dy
= −M

dθ

dy
, (17)

where M is the viscosity index.
Substituting eq. (17) into eqs (8), (9) and (13) gives
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5. Results and discussion

Suitable transformation is used to transform the non-
linear differential equations (8) and (9) into dimension-
less ordinary differential equations (ODEs), which can
be solved by using finite element method. For the entire
numerical computation, dimensionless parameters are
taken λ1 = 0.5, λ2 = 1.2, M = 0.5, P = −1,
Rd = 1.5, 	 = 2, Bi = 0.5, Ha = 0.8. The effect
of various parameters on the flow and heat transfer phe-
nomenon is explained through graphs.

5.1 Effect of Hartmann Number (Ha) on various
profiles

Impact of Hartmann number (Ha) is sketched in fig-
ure 2. Generally, the geometries of velocity profile are
parabolic in nature with zero values at the wall with no
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Figure 6. Effect of Rd on (a) temperature (θ (y)), (b) entropy generation (Ns) and (c) Bejan Number (Be).

slip condition and maximum values within the channel.
It can be noted that the velocity profile shows a declining
nature to the increasing values ofHa. As Hartmann num-
ber is associated with Lorentz force, larger values of Ha
produces more resistance to the flow and consequently u
reduces. Now, temperature also exhibits a similar behav-
ior as that of the velocity. AsHa increases, Lorentz force
increases which is a favourable factor for temperature.
But, due to the convective heat loss, the temperature
profile exhibits an opposite behaviour. Entropy gener-
ation profile shows decreasing nature at the walls of
the channel and increasing nature within the walls for
increasing values of Ha. As Ha increases Bejan num-
ber (Be) profile shows an enhancing behaviour at the
walls and a decreasing nature within the walls. When
Ha increases at the walls, the resulting Lorentz force
creates a higher pressure drop at the walls leading to an
increase inBe. For the fluid within the walls, the increas-
ing Lorentz force results in a lesser pressure drop which
consequently results in altered nature of Be.

5.2 Effects of viscosity index (M) on various profiles

Figure 3 represents the effect of viscosity index (M)

on velocity u(y), temperature θ(y), entropy generation

Ns and Bejan number Be. It can be noticed that the
velocity profile enhances with increasing M since higher
M results in a low viscosity which is favourable for
the velocity. θ(y) can be seen enhancing with higher
values of M. As the value of M increases, the viscos-
ity decreases which results in an increasing internal
resistance between the fluid molecules. This resistance
leads to higher temperature. As M increases, viscosity
decreases which results in the increased velocity and
hence there is an unavailability of energy resulting in an
increase in the entropy generation. Be profile shows a
declining nature to the changes of M . As M increases,
the viscosity decreases which results in a lower pressure
drop of the fluid and a deterioration in the Be profile.

5.3 Effect of non-Newtonian behaviour (λ1) on
different profiles

Figure 4 represents the change in the profile of velocity,
temperature, entropy generation Ns and Be with larger
estimations of dimensionless parameter related to the
non-Newtonian behaviour. As λ1 increases, the veloc-
ity profile shows a declining nature. As λ1 increases,
the viscosity of the fluid enhances which causes a
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Figure 7. Effect of λ2 on (a) (u (y)), (b) temperature (θ (y)), (c) entropy generation (Ns) and (d) Bejan Number (Be).

decrease in velocity profile. It can be noticed that influ-
ence of λ1 via temperature profile shows a behaviour
similar to the velocity profile. Reducing impact is
observed for temperature profile. It can be noted from
the figure that increase in λ1 produces more distur-
bance in the flow system and thus entropy generation
rate becomes less, but reverse trend is observed for
Be. This is because campared to irreversibility due
to fluid friction, the heat transfer irreversibility is
higher.

5.4 Effect of Biot Number (Bi) on different profiles

Figure 5 shows the influence of Bi on θ (y) , Ns and
Be profiles. The temperature profile clearly depicts that
as Bi increases the temperature decreases due to the
enhancement in internal conductive resistance which
results in the decrease of temperature. It can be noted that
Ns profiles show similar behaviour for raising values of
Bi. Increasing Bi leads to internal conductive resistance
and increase in the pressure drop. Due to this, Ns and
Be profiles increase. So, we can say that the convec-
tive thermal boundary conditions increase the dominant
effects of heat transfer irreversibility on the fluid flow
system.

5.5 Effect of radiation parameter (Rd) on different
profiles

Figure 6 depicts the effect of radiation parameter on
temperature θ(y), Ns and Be profiles. Temperature pro-
file decreases at one end of the wall and increases on
the other but converges in the middle as Rd goes higher.
The Ns and Be distributions show a deteriorating nature
as Rd increases.

5.6 Effect of porosity (λ2) on different profiles

Figure 7 depicts the variation in u (y), θ (y), Ns and Be
profiles for increasing values of dimensionless param-
eter of porosity. It is noticed that increasing values of
u(y) and θ(y) profiles show a decreasing nature to
the enhancing values of λ2. Resistance between the
molecules of the fluid increases which leads to decrease
in velocity and temperature. Entropy generation profile
decreases as porosity increases.

5.7 Effect of viscous dissipation on different profiles

Figure 8 depicts the changes in the profiles of u (y),
θ (y), Ns and Be with increasing values of viscous
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Figure 8. Effect of 	 on (a) velocity (u (y)), (b) temperature (θ (y)), (c) entropy generation (Ns) and (d) Bejan Number
(Be).

dissipation. The velocity profile increases with higher
	 values. From the figure it is found that θ (y) and
Ns profiles are increasing with increasing 	, but Bejan
number shows opposite behaviour to the increasing val-
ues of 	. With increasing 	, viscosity of the fluid rises
by transforming energy from the motion of the fluid and
converting into internal energy leading to rise in temper-
ature profile. Therefore, there is an inaccessibility in the
transformation of thermal energy to mechanical energy
as it is transformed to the internal energy. Consequently,
entropy generation profile increases.

6. Conclusion

Entropy generation and heat transfer analysis of MHD
flow of an incompressible third-grade fluid through
a microchannel porous wall have been analysed. The
problem is tackled numerically by using FEM. Based
on the above presented results, the conclusions drawn
are:

• Velocity profile increases on increasing M and 	

whereas it decreases on increasing Ha, λ1 and λ2.

• Temperature profile escalates with higher values of
M and 	 while it declines for Ha, Bi, λ1 and λ2. In
case of Rd, the temperature profile enhances at walls
and declines within the walls.

• Entropy generation increases at increasing values of
M , Bi and 	 whereas it deteriorates on growing
values of λ1, Rd and λ2. At the walls, the profile
increases with higher Ha and declines with lower
Ha.

• Bejan number increases with escalating values of λ1,
Bi and λ2 while it minimises for M , Rd and 	. The
Bejan number profile exhibits enhancing behaviour
at the walls and decreasing nature within the walls
for Ha.
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